Metamath Proof Explorer


Theorem mntf

Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024)

Ref Expression
Hypotheses mntf.1 A = Base V
mntf.2 B = Base W
Assertion mntf V X W Y F V Monot W F : A B

Proof

Step Hyp Ref Expression
1 mntf.1 A = Base V
2 mntf.2 B = Base W
3 eqid V = V
4 eqid W = W
5 1 2 3 4 ismnt V X W Y F V Monot W F : A B x A y A x V y F x W F y
6 5 biimp3a V X W Y F V Monot W F : A B x A y A x V y F x W F y
7 6 simpld V X W Y F V Monot W F : A B