Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Extensible Structures
Order Theory
mntf
Next ⟩
mgcoval
Metamath Proof Explorer
Ascii
Unicode
Theorem
mntf
Description:
A monotone function is a function.
(Contributed by
Thierry Arnoux
, 24-Apr-2024)
Ref
Expression
Hypotheses
mntf.1
⊢
A
=
Base
V
mntf.2
⊢
B
=
Base
W
Assertion
mntf
⊢
V
∈
X
∧
W
∈
Y
∧
F
∈
V
Monot
W
→
F
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
mntf.1
⊢
A
=
Base
V
2
mntf.2
⊢
B
=
Base
W
3
eqid
⊢
≤
V
=
≤
V
4
eqid
⊢
≤
W
=
≤
W
5
1
2
3
4
ismnt
⊢
V
∈
X
∧
W
∈
Y
→
F
∈
V
Monot
W
↔
F
:
A
⟶
B
∧
∀
x
∈
A
∀
y
∈
A
x
≤
V
y
→
F
⁡
x
≤
W
F
⁡
y
6
5
biimp3a
⊢
V
∈
X
∧
W
∈
Y
∧
F
∈
V
Monot
W
→
F
:
A
⟶
B
∧
∀
x
∈
A
∀
y
∈
A
x
≤
V
y
→
F
⁡
x
≤
W
F
⁡
y
7
6
simpld
⊢
V
∈
X
∧
W
∈
Y
∧
F
∈
V
Monot
W
→
F
:
A
⟶
B