Step |
Hyp |
Ref |
Expression |
1 |
|
mntf.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mntf.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝑉 ) = ( le ‘ 𝑉 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
5 |
1 2 3 4
|
ismnt |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
6 |
5
|
biimp3a |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹 ‘ 𝑥 ) ( le ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |