Metamath Proof Explorer


Theorem mntf

Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024)

Ref Expression
Hypotheses mntf.1 𝐴 = ( Base ‘ 𝑉 )
mntf.2 𝐵 = ( Base ‘ 𝑊 )
Assertion mntf ( ( 𝑉𝑋𝑊𝑌𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) → 𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 mntf.1 𝐴 = ( Base ‘ 𝑉 )
2 mntf.2 𝐵 = ( Base ‘ 𝑊 )
3 eqid ( le ‘ 𝑉 ) = ( le ‘ 𝑉 )
4 eqid ( le ‘ 𝑊 ) = ( le ‘ 𝑊 )
5 1 2 3 4 ismnt ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝐹 ∈ ( 𝑉 Monot 𝑊 ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹𝑥 ) ( le ‘ 𝑊 ) ( 𝐹𝑦 ) ) ) ) )
6 5 biimp3a ( ( 𝑉𝑋𝑊𝑌𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) → ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 ( le ‘ 𝑉 ) 𝑦 → ( 𝐹𝑥 ) ( le ‘ 𝑊 ) ( 𝐹𝑦 ) ) ) )
7 6 simpld ( ( 𝑉𝑋𝑊𝑌𝐹 ∈ ( 𝑉 Monot 𝑊 ) ) → 𝐹 : 𝐴𝐵 )