Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
|- B = ( Base ` G ) |
2 |
|
nsgqusf1o.s |
|- S = { h e. ( SubGrp ` G ) | N C_ h } |
3 |
|
nsgqusf1o.t |
|- T = ( SubGrp ` Q ) |
4 |
|
nsgqusf1o.1 |
|- .<_ = ( le ` ( toInc ` S ) ) |
5 |
|
nsgqusf1o.2 |
|- .c_ = ( le ` ( toInc ` T ) ) |
6 |
|
nsgqusf1o.q |
|- Q = ( G /s ( G ~QG N ) ) |
7 |
|
nsgqusf1o.p |
|- .(+) = ( LSSum ` G ) |
8 |
|
nsgqusf1o.e |
|- E = ( h e. S |-> ran ( x e. h |-> ( { x } .(+) N ) ) ) |
9 |
|
nsgqusf1o.f |
|- F = ( f e. T |-> { a e. B | ( { a } .(+) N ) e. f } ) |
10 |
|
nsgqusf1o.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
11 |
9
|
elrnmpt |
|- ( h e. _V -> ( h e. ran F <-> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) ) |
12 |
11
|
elv |
|- ( h e. ran F <-> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) |
13 |
2
|
rabeq2i |
|- ( h e. S <-> ( h e. ( SubGrp ` G ) /\ N C_ h ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> ran ( x e. h |-> ( { x } .(+) N ) ) e. T ) |
15 |
|
eleq2 |
|- ( f = ran ( x e. h |-> ( { x } .(+) N ) ) -> ( ( { a } .(+) N ) e. f <-> ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) ) |
16 |
15
|
rabbidv |
|- ( f = ran ( x e. h |-> ( { x } .(+) N ) ) -> { a e. B | ( { a } .(+) N ) e. f } = { a e. B | ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) } ) |
17 |
16
|
eqeq2d |
|- ( f = ran ( x e. h |-> ( { x } .(+) N ) ) -> ( h = { a e. B | ( { a } .(+) N ) e. f } <-> h = { a e. B | ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) } ) ) |
18 |
17
|
adantl |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ f = ran ( x e. h |-> ( { x } .(+) N ) ) ) -> ( h = { a e. B | ( { a } .(+) N ) e. f } <-> h = { a e. B | ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) } ) ) |
19 |
|
nfv |
|- F/ x ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) |
20 |
|
nfmpt1 |
|- F/_ x ( x e. h |-> ( { x } .(+) N ) ) |
21 |
20
|
nfrn |
|- F/_ x ran ( x e. h |-> ( { x } .(+) N ) ) |
22 |
21
|
nfel2 |
|- F/ x ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) |
23 |
19 22
|
nfan |
|- F/ x ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
24 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
25 |
10 24
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
26 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
27 |
25 26
|
syl |
|- ( ph -> G e. Grp ) |
28 |
27
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> G e. Grp ) |
29 |
28
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> G e. Grp ) |
30 |
1
|
subgss |
|- ( h e. ( SubGrp ` G ) -> h C_ B ) |
31 |
30
|
ad3antlr |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) -> h C_ B ) |
32 |
31
|
sselda |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> x e. B ) |
33 |
32
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> x e. B ) |
34 |
|
simplr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> a e. B ) |
35 |
34
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> a e. B ) |
36 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
37 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
38 |
1 36 37
|
grpasscan1 |
|- ( ( G e. Grp /\ x e. B /\ a e. B ) -> ( x ( +g ` G ) ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) ) = a ) |
39 |
29 33 35 38
|
syl3anc |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> ( x ( +g ` G ) ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) ) = a ) |
40 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> h e. ( SubGrp ` G ) ) |
41 |
|
simplr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> x e. h ) |
42 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> N C_ h ) |
43 |
1
|
subgss |
|- ( N e. ( SubGrp ` G ) -> N C_ B ) |
44 |
25 43
|
syl |
|- ( ph -> N C_ B ) |
45 |
44
|
ad5antr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> N C_ B ) |
46 |
|
eqid |
|- ( G ~QG N ) = ( G ~QG N ) |
47 |
1 46
|
eqger |
|- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er B ) |
48 |
25 47
|
syl |
|- ( ph -> ( G ~QG N ) Er B ) |
49 |
48
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> ( G ~QG N ) Er B ) |
50 |
49
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> ( G ~QG N ) Er B ) |
51 |
49 34
|
erth |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> ( a ( G ~QG N ) x <-> [ a ] ( G ~QG N ) = [ x ] ( G ~QG N ) ) ) |
52 |
25
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> N e. ( SubGrp ` G ) ) |
53 |
1 7 52 34
|
quslsm |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> [ a ] ( G ~QG N ) = ( { a } .(+) N ) ) |
54 |
1 7 52 32
|
quslsm |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> [ x ] ( G ~QG N ) = ( { x } .(+) N ) ) |
55 |
53 54
|
eqeq12d |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> ( [ a ] ( G ~QG N ) = [ x ] ( G ~QG N ) <-> ( { a } .(+) N ) = ( { x } .(+) N ) ) ) |
56 |
51 55
|
bitrd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) -> ( a ( G ~QG N ) x <-> ( { a } .(+) N ) = ( { x } .(+) N ) ) ) |
57 |
56
|
biimpar |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> a ( G ~QG N ) x ) |
58 |
50 57
|
ersym |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> x ( G ~QG N ) a ) |
59 |
1 37 36 46
|
eqgval |
|- ( ( G e. Grp /\ N C_ B ) -> ( x ( G ~QG N ) a <-> ( x e. B /\ a e. B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. N ) ) ) |
60 |
59
|
biimpa |
|- ( ( ( G e. Grp /\ N C_ B ) /\ x ( G ~QG N ) a ) -> ( x e. B /\ a e. B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. N ) ) |
61 |
60
|
simp3d |
|- ( ( ( G e. Grp /\ N C_ B ) /\ x ( G ~QG N ) a ) -> ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. N ) |
62 |
29 45 58 61
|
syl21anc |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. N ) |
63 |
42 62
|
sseldd |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. h ) |
64 |
36
|
subgcl |
|- ( ( h e. ( SubGrp ` G ) /\ x e. h /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) e. h ) -> ( x ( +g ` G ) ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) ) e. h ) |
65 |
40 41 63 64
|
syl3anc |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> ( x ( +g ` G ) ( ( ( invg ` G ) ` x ) ( +g ` G ) a ) ) e. h ) |
66 |
39 65
|
eqeltrrd |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> a e. h ) |
67 |
66
|
adantllr |
|- ( ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) /\ x e. h ) /\ ( { a } .(+) N ) = ( { x } .(+) N ) ) -> a e. h ) |
68 |
|
eqid |
|- ( x e. h |-> ( { x } .(+) N ) ) = ( x e. h |-> ( { x } .(+) N ) ) |
69 |
|
ovex |
|- ( { x } .(+) N ) e. _V |
70 |
68 69
|
elrnmpti |
|- ( ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) <-> E. x e. h ( { a } .(+) N ) = ( { x } .(+) N ) ) |
71 |
70
|
biimpi |
|- ( ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) -> E. x e. h ( { a } .(+) N ) = ( { x } .(+) N ) ) |
72 |
71
|
adantl |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> E. x e. h ( { a } .(+) N ) = ( { x } .(+) N ) ) |
73 |
23 67 72
|
r19.29af |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) -> a e. h ) |
74 |
|
simpr |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ a e. h ) -> a e. h ) |
75 |
|
ovexd |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ a e. h ) -> ( { a } .(+) N ) e. _V ) |
76 |
|
sneq |
|- ( x = a -> { x } = { a } ) |
77 |
76
|
oveq1d |
|- ( x = a -> ( { x } .(+) N ) = ( { a } .(+) N ) ) |
78 |
77
|
eqcomd |
|- ( x = a -> ( { a } .(+) N ) = ( { x } .(+) N ) ) |
79 |
78
|
adantl |
|- ( ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ a e. h ) /\ x = a ) -> ( { a } .(+) N ) = ( { x } .(+) N ) ) |
80 |
68 74 75 79
|
elrnmptdv |
|- ( ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) /\ a e. h ) -> ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) ) |
81 |
73 80
|
impbida |
|- ( ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) /\ a e. B ) -> ( ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) <-> a e. h ) ) |
82 |
81
|
rabbidva |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> { a e. B | ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) } = { a e. B | a e. h } ) |
83 |
30
|
adantl |
|- ( ( ph /\ h e. ( SubGrp ` G ) ) -> h C_ B ) |
84 |
|
dfss7 |
|- ( h C_ B <-> { a e. B | a e. h } = h ) |
85 |
83 84
|
sylib |
|- ( ( ph /\ h e. ( SubGrp ` G ) ) -> { a e. B | a e. h } = h ) |
86 |
85
|
adantr |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> { a e. B | a e. h } = h ) |
87 |
82 86
|
eqtr2d |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> h = { a e. B | ( { a } .(+) N ) e. ran ( x e. h |-> ( { x } .(+) N ) ) } ) |
88 |
14 18 87
|
rspcedvd |
|- ( ( ( ph /\ h e. ( SubGrp ` G ) ) /\ N C_ h ) -> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) |
89 |
88
|
anasss |
|- ( ( ph /\ ( h e. ( SubGrp ` G ) /\ N C_ h ) ) -> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) |
90 |
10
|
adantr |
|- ( ( ph /\ f e. T ) -> N e. ( NrmSGrp ` G ) ) |
91 |
3
|
eleq2i |
|- ( f e. T <-> f e. ( SubGrp ` Q ) ) |
92 |
91
|
biimpi |
|- ( f e. T -> f e. ( SubGrp ` Q ) ) |
93 |
92
|
adantl |
|- ( ( ph /\ f e. T ) -> f e. ( SubGrp ` Q ) ) |
94 |
1 6 7 90 93
|
nsgmgclem |
|- ( ( ph /\ f e. T ) -> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) |
95 |
94
|
adantr |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) |
96 |
|
eleq1 |
|- ( h = { a e. B | ( { a } .(+) N ) e. f } -> ( h e. ( SubGrp ` G ) <-> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) ) |
97 |
96
|
adantl |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> ( h e. ( SubGrp ` G ) <-> { a e. B | ( { a } .(+) N ) e. f } e. ( SubGrp ` G ) ) ) |
98 |
95 97
|
mpbird |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> h e. ( SubGrp ` G ) ) |
99 |
44
|
adantr |
|- ( ( ph /\ f e. T ) -> N C_ B ) |
100 |
25
|
ad2antrr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. ( SubGrp ` G ) ) |
101 |
|
simpr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> a e. N ) |
102 |
7
|
grplsmid |
|- ( ( N e. ( SubGrp ` G ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
103 |
100 101 102
|
syl2anc |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) = N ) |
104 |
6
|
nsgqus0 |
|- ( ( N e. ( NrmSGrp ` G ) /\ f e. ( SubGrp ` Q ) ) -> N e. f ) |
105 |
90 93 104
|
syl2anc |
|- ( ( ph /\ f e. T ) -> N e. f ) |
106 |
105
|
adantr |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> N e. f ) |
107 |
103 106
|
eqeltrd |
|- ( ( ( ph /\ f e. T ) /\ a e. N ) -> ( { a } .(+) N ) e. f ) |
108 |
99 107
|
ssrabdv |
|- ( ( ph /\ f e. T ) -> N C_ { a e. B | ( { a } .(+) N ) e. f } ) |
109 |
108
|
adantr |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> N C_ { a e. B | ( { a } .(+) N ) e. f } ) |
110 |
|
simpr |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> h = { a e. B | ( { a } .(+) N ) e. f } ) |
111 |
109 110
|
sseqtrrd |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> N C_ h ) |
112 |
98 111
|
jca |
|- ( ( ( ph /\ f e. T ) /\ h = { a e. B | ( { a } .(+) N ) e. f } ) -> ( h e. ( SubGrp ` G ) /\ N C_ h ) ) |
113 |
112
|
r19.29an |
|- ( ( ph /\ E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) -> ( h e. ( SubGrp ` G ) /\ N C_ h ) ) |
114 |
89 113
|
impbida |
|- ( ph -> ( ( h e. ( SubGrp ` G ) /\ N C_ h ) <-> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) ) |
115 |
13 114
|
syl5bb |
|- ( ph -> ( h e. S <-> E. f e. T h = { a e. B | ( { a } .(+) N ) e. f } ) ) |
116 |
12 115
|
bitr4id |
|- ( ph -> ( h e. ran F <-> h e. S ) ) |
117 |
116
|
eqrdv |
|- ( ph -> ran F = S ) |