Step |
Hyp |
Ref |
Expression |
1 |
|
grplsmid.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
subgrcl |
|- ( A e. ( SubGrp ` G ) -> G e. Grp ) |
3 |
2
|
adantr |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> G e. Grp ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
4
|
subgss |
|- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
6 |
5
|
sselda |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> X e. ( Base ` G ) ) |
7 |
6
|
snssd |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> { X } C_ ( Base ` G ) ) |
8 |
5
|
adantr |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> A C_ ( Base ` G ) ) |
9 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
10 |
4 9 1
|
lsmelvalx |
|- ( ( G e. Grp /\ { X } C_ ( Base ` G ) /\ A C_ ( Base ` G ) ) -> ( x e. ( { X } .(+) A ) <-> E. o e. { X } E. a e. A x = ( o ( +g ` G ) a ) ) ) |
11 |
3 7 8 10
|
syl3anc |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( x e. ( { X } .(+) A ) <-> E. o e. { X } E. a e. A x = ( o ( +g ` G ) a ) ) ) |
12 |
|
oveq1 |
|- ( o = X -> ( o ( +g ` G ) a ) = ( X ( +g ` G ) a ) ) |
13 |
12
|
eqeq2d |
|- ( o = X -> ( x = ( o ( +g ` G ) a ) <-> x = ( X ( +g ` G ) a ) ) ) |
14 |
13
|
rexbidv |
|- ( o = X -> ( E. a e. A x = ( o ( +g ` G ) a ) <-> E. a e. A x = ( X ( +g ` G ) a ) ) ) |
15 |
14
|
rexsng |
|- ( X e. A -> ( E. o e. { X } E. a e. A x = ( o ( +g ` G ) a ) <-> E. a e. A x = ( X ( +g ` G ) a ) ) ) |
16 |
15
|
adantl |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( E. o e. { X } E. a e. A x = ( o ( +g ` G ) a ) <-> E. a e. A x = ( X ( +g ` G ) a ) ) ) |
17 |
|
simpr |
|- ( ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ a e. A ) /\ x = ( X ( +g ` G ) a ) ) -> x = ( X ( +g ` G ) a ) ) |
18 |
9
|
subgcl |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A /\ a e. A ) -> ( X ( +g ` G ) a ) e. A ) |
19 |
18
|
ad4ant123 |
|- ( ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ a e. A ) /\ x = ( X ( +g ` G ) a ) ) -> ( X ( +g ` G ) a ) e. A ) |
20 |
17 19
|
eqeltrd |
|- ( ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ a e. A ) /\ x = ( X ( +g ` G ) a ) ) -> x e. A ) |
21 |
20
|
r19.29an |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ E. a e. A x = ( X ( +g ` G ) a ) ) -> x e. A ) |
22 |
|
simpll |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> A e. ( SubGrp ` G ) ) |
23 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
24 |
23
|
subginvcl |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( ( invg ` G ) ` X ) e. A ) |
25 |
24
|
adantr |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> ( ( invg ` G ) ` X ) e. A ) |
26 |
|
simpr |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> x e. A ) |
27 |
9
|
subgcl |
|- ( ( A e. ( SubGrp ` G ) /\ ( ( invg ` G ) ` X ) e. A /\ x e. A ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) e. A ) |
28 |
22 25 26 27
|
syl3anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) e. A ) |
29 |
|
oveq2 |
|- ( a = ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) -> ( X ( +g ` G ) a ) = ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) ) |
30 |
29
|
eqeq2d |
|- ( a = ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) -> ( x = ( X ( +g ` G ) a ) <-> x = ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) ) ) |
31 |
30
|
adantl |
|- ( ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) /\ a = ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) -> ( x = ( X ( +g ` G ) a ) <-> x = ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) ) ) |
32 |
3
|
adantr |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> G e. Grp ) |
33 |
6
|
adantr |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> X e. ( Base ` G ) ) |
34 |
8
|
sselda |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> x e. ( Base ` G ) ) |
35 |
4 9 23
|
grpasscan1 |
|- ( ( G e. Grp /\ X e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) = x ) |
36 |
32 33 34 35
|
syl3anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) = x ) |
37 |
36
|
eqcomd |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> x = ( X ( +g ` G ) ( ( ( invg ` G ) ` X ) ( +g ` G ) x ) ) ) |
38 |
28 31 37
|
rspcedvd |
|- ( ( ( A e. ( SubGrp ` G ) /\ X e. A ) /\ x e. A ) -> E. a e. A x = ( X ( +g ` G ) a ) ) |
39 |
21 38
|
impbida |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( E. a e. A x = ( X ( +g ` G ) a ) <-> x e. A ) ) |
40 |
11 16 39
|
3bitrd |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( x e. ( { X } .(+) A ) <-> x e. A ) ) |
41 |
40
|
eqrdv |
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( { X } .(+) A ) = A ) |