| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqus0.q |
|- Q = ( G /s ( G ~QG N ) ) |
| 2 |
|
simpl |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> N e. ( NrmSGrp ` G ) ) |
| 3 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
| 6 |
4 5
|
lsm02 |
|- ( N e. ( SubGrp ` G ) -> ( { ( 0g ` G ) } ( LSSum ` G ) N ) = N ) |
| 7 |
2 3 6
|
3syl |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> ( { ( 0g ` G ) } ( LSSum ` G ) N ) = N ) |
| 8 |
1 4
|
qus0 |
|- ( N e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG N ) = ( 0g ` Q ) ) |
| 9 |
8
|
adantr |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> [ ( 0g ` G ) ] ( G ~QG N ) = ( 0g ` Q ) ) |
| 10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 11 |
3
|
adantr |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> N e. ( SubGrp ` G ) ) |
| 12 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
| 13 |
3 12
|
syl |
|- ( N e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 14 |
13
|
adantr |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> G e. Grp ) |
| 15 |
10 4
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 16 |
14 15
|
syl |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 17 |
10 5 11 16
|
quslsm |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> [ ( 0g ` G ) ] ( G ~QG N ) = ( { ( 0g ` G ) } ( LSSum ` G ) N ) ) |
| 18 |
9 17
|
eqtr3d |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> ( 0g ` Q ) = ( { ( 0g ` G ) } ( LSSum ` G ) N ) ) |
| 19 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 20 |
19
|
subg0cl |
|- ( F e. ( SubGrp ` Q ) -> ( 0g ` Q ) e. F ) |
| 21 |
20
|
adantl |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> ( 0g ` Q ) e. F ) |
| 22 |
18 21
|
eqeltrrd |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> ( { ( 0g ` G ) } ( LSSum ` G ) N ) e. F ) |
| 23 |
7 22
|
eqeltrrd |
|- ( ( N e. ( NrmSGrp ` G ) /\ F e. ( SubGrp ` Q ) ) -> N e. F ) |