Metamath Proof Explorer


Theorem nsgqus0

Description: A normal subgroup N is a member of all subgroups F of the quotient group by N . In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypothesis nsgqus0.q Q = G / 𝑠 G ~ QG N
Assertion nsgqus0 N NrmSGrp G F SubGrp Q N F

Proof

Step Hyp Ref Expression
1 nsgqus0.q Q = G / 𝑠 G ~ QG N
2 simpl N NrmSGrp G F SubGrp Q N NrmSGrp G
3 nsgsubg N NrmSGrp G N SubGrp G
4 eqid 0 G = 0 G
5 eqid LSSum G = LSSum G
6 4 5 lsm02 N SubGrp G 0 G LSSum G N = N
7 2 3 6 3syl N NrmSGrp G F SubGrp Q 0 G LSSum G N = N
8 1 4 qus0 N NrmSGrp G 0 G G ~ QG N = 0 Q
9 8 adantr N NrmSGrp G F SubGrp Q 0 G G ~ QG N = 0 Q
10 eqid Base G = Base G
11 3 adantr N NrmSGrp G F SubGrp Q N SubGrp G
12 subgrcl N SubGrp G G Grp
13 3 12 syl N NrmSGrp G G Grp
14 13 adantr N NrmSGrp G F SubGrp Q G Grp
15 10 4 grpidcl G Grp 0 G Base G
16 14 15 syl N NrmSGrp G F SubGrp Q 0 G Base G
17 10 5 11 16 quslsm N NrmSGrp G F SubGrp Q 0 G G ~ QG N = 0 G LSSum G N
18 9 17 eqtr3d N NrmSGrp G F SubGrp Q 0 Q = 0 G LSSum G N
19 eqid 0 Q = 0 Q
20 19 subg0cl F SubGrp Q 0 Q F
21 20 adantl N NrmSGrp G F SubGrp Q 0 Q F
22 18 21 eqeltrrd N NrmSGrp G F SubGrp Q 0 G LSSum G N F
23 7 22 eqeltrrd N NrmSGrp G F SubGrp Q N F