| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgqusf1o.b |
|
| 2 |
|
nsgqusf1o.s |
|
| 3 |
|
nsgqusf1o.t |
|
| 4 |
|
nsgqusf1o.1 |
|
| 5 |
|
nsgqusf1o.2 |
Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |- |
| 6 |
|
nsgqusf1o.q |
|
| 7 |
|
nsgqusf1o.p |
|
| 8 |
|
nsgqusf1o.e |
|
| 9 |
|
nsgqusf1o.f |
|
| 10 |
|
nsgqusf1o.n |
|
| 11 |
9
|
elrnmpt |
|
| 12 |
11
|
elv |
|
| 13 |
2
|
reqabi |
|
| 14 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
|
| 15 |
|
eleq2 |
|
| 16 |
15
|
rabbidv |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
adantl |
|
| 19 |
|
nfv |
|
| 20 |
|
nfmpt1 |
|
| 21 |
20
|
nfrn |
|
| 22 |
21
|
nfel2 |
|
| 23 |
19 22
|
nfan |
|
| 24 |
|
nsgsubg |
|
| 25 |
10 24
|
syl |
|
| 26 |
|
subgrcl |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
ad4antr |
|
| 29 |
28
|
adantr |
|
| 30 |
1
|
subgss |
|
| 31 |
30
|
ad3antlr |
|
| 32 |
31
|
sselda |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simplr |
|
| 35 |
34
|
adantr |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
1 36 37
|
grpasscan1 |
|
| 39 |
29 33 35 38
|
syl3anc |
|
| 40 |
|
simp-5r |
|
| 41 |
|
simplr |
|
| 42 |
|
simp-4r |
|
| 43 |
1
|
subgss |
|
| 44 |
25 43
|
syl |
|
| 45 |
44
|
ad5antr |
|
| 46 |
|
eqid |
|
| 47 |
1 46
|
eqger |
|
| 48 |
25 47
|
syl |
|
| 49 |
48
|
ad4antr |
|
| 50 |
49
|
adantr |
|
| 51 |
49 34
|
erth |
|
| 52 |
25
|
ad4antr |
|
| 53 |
1 7 52 34
|
quslsm |
|
| 54 |
1 7 52 32
|
quslsm |
|
| 55 |
53 54
|
eqeq12d |
|
| 56 |
51 55
|
bitrd |
|
| 57 |
56
|
biimpar |
|
| 58 |
50 57
|
ersym |
|
| 59 |
1 37 36 46
|
eqgval |
|
| 60 |
59
|
biimpa |
|
| 61 |
60
|
simp3d |
|
| 62 |
29 45 58 61
|
syl21anc |
|
| 63 |
42 62
|
sseldd |
|
| 64 |
36
|
subgcl |
|
| 65 |
40 41 63 64
|
syl3anc |
|
| 66 |
39 65
|
eqeltrrd |
|
| 67 |
66
|
adantllr |
|
| 68 |
|
eqid |
|
| 69 |
|
ovex |
|
| 70 |
68 69
|
elrnmpti |
|
| 71 |
70
|
biimpi |
|
| 72 |
71
|
adantl |
|
| 73 |
23 67 72
|
r19.29af |
|
| 74 |
|
simpr |
|
| 75 |
|
ovexd |
|
| 76 |
|
sneq |
|
| 77 |
76
|
oveq1d |
|
| 78 |
77
|
eqcomd |
|
| 79 |
78
|
adantl |
|
| 80 |
68 74 75 79
|
elrnmptdv |
|
| 81 |
73 80
|
impbida |
|
| 82 |
81
|
rabbidva |
|
| 83 |
30
|
adantl |
|
| 84 |
|
dfss7 |
|
| 85 |
83 84
|
sylib |
|
| 86 |
85
|
adantr |
|
| 87 |
82 86
|
eqtr2d |
|
| 88 |
14 18 87
|
rspcedvd |
|
| 89 |
88
|
anasss |
|
| 90 |
10
|
adantr |
|
| 91 |
3
|
eleq2i |
|
| 92 |
91
|
biimpi |
|
| 93 |
92
|
adantl |
|
| 94 |
1 6 7 90 93
|
nsgmgclem |
|
| 95 |
94
|
adantr |
|
| 96 |
|
eleq1 |
|
| 97 |
96
|
adantl |
|
| 98 |
95 97
|
mpbird |
|
| 99 |
44
|
adantr |
|
| 100 |
25
|
ad2antrr |
|
| 101 |
|
simpr |
|
| 102 |
7
|
grplsmid |
|
| 103 |
100 101 102
|
syl2anc |
|
| 104 |
6
|
nsgqus0 |
|
| 105 |
90 93 104
|
syl2anc |
|
| 106 |
105
|
adantr |
|
| 107 |
103 106
|
eqeltrd |
|
| 108 |
99 107
|
ssrabdv |
|
| 109 |
108
|
adantr |
|
| 110 |
|
simpr |
|
| 111 |
109 110
|
sseqtrrd |
|
| 112 |
98 111
|
jca |
|
| 113 |
112
|
r19.29an |
|
| 114 |
89 113
|
impbida |
|
| 115 |
13 114
|
bitrid |
|
| 116 |
12 115
|
bitr4id |
|
| 117 |
116
|
eqrdv |
|