Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
|
2 |
|
nsgqusf1o.s |
|
3 |
|
nsgqusf1o.t |
|
4 |
|
nsgqusf1o.1 |
|
5 |
|
nsgqusf1o.2 |
Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |- |
6 |
|
nsgqusf1o.q |
|
7 |
|
nsgqusf1o.p |
|
8 |
|
nsgqusf1o.e |
|
9 |
|
nsgqusf1o.f |
|
10 |
|
nsgqusf1o.n |
|
11 |
6
|
qusgrp |
|
12 |
10 11
|
syl |
|
13 |
12
|
ad2antrr |
|
14 |
1
|
subgss |
|
15 |
14
|
ad2antlr |
|
16 |
15
|
sselda |
|
17 |
|
ovex |
|
18 |
17
|
ecelqsi |
|
19 |
16 18
|
syl |
|
20 |
|
nsgsubg |
|
21 |
10 20
|
syl |
|
22 |
21
|
ad3antrrr |
|
23 |
1 7 22 16
|
quslsm |
|
24 |
6
|
a1i |
|
25 |
1
|
a1i |
|
26 |
|
ovexd |
|
27 |
|
subgrcl |
|
28 |
21 27
|
syl |
|
29 |
24 25 26 28
|
qusbas |
|
30 |
29
|
ad3antrrr |
|
31 |
19 23 30
|
3eltr3d |
|
32 |
31
|
ralrimiva |
|
33 |
|
eqid |
|
34 |
33
|
rnmptss |
|
35 |
32 34
|
syl |
|
36 |
|
nfv |
|
37 |
|
ovexd |
|
38 |
|
eqid |
|
39 |
38
|
subg0cl |
|
40 |
39
|
ne0d |
|
41 |
40
|
ad2antlr |
|
42 |
36 37 33 41
|
rnmptn0 |
|
43 |
|
nfmpt1 |
|
44 |
43
|
nfrn |
|
45 |
44
|
nfel2 |
|
46 |
36 45
|
nfan |
|
47 |
44
|
nfel2 |
|
48 |
44 47
|
nfralw |
|
49 |
44
|
nfel2 |
|
50 |
48 49
|
nfan |
|
51 |
|
sneq |
|
52 |
51
|
oveq1d |
|
53 |
52
|
cbvmptv |
|
54 |
|
simp-4r |
|
55 |
54
|
ad2antrr |
|
56 |
|
simp-4r |
|
57 |
|
simplr |
|
58 |
|
eqid |
|
59 |
58
|
subgcl |
|
60 |
55 56 57 59
|
syl3anc |
|
61 |
|
sneq |
|
62 |
61
|
oveq1d |
|
63 |
62
|
eqeq2d |
|
64 |
63
|
adantl |
|
65 |
|
simpr |
|
66 |
23
|
adantr |
|
67 |
65 66
|
eqtr4d |
|
68 |
67
|
ad2antrr |
|
69 |
|
simpr |
|
70 |
10
|
ad4antr |
|
71 |
70
|
ad2antrr |
|
72 |
71 20
|
syl |
|
73 |
55 14
|
syl |
|
74 |
73 57
|
sseldd |
|
75 |
1 7 72 74
|
quslsm |
|
76 |
69 75
|
eqtr4d |
|
77 |
68 76
|
oveq12d |
|
78 |
16
|
adantr |
|
79 |
78
|
ad2antrr |
|
80 |
|
eqid |
|
81 |
6 1 58 80
|
qusadd |
|
82 |
71 79 74 81
|
syl3anc |
|
83 |
73 60
|
sseldd |
|
84 |
1 7 72 83
|
quslsm |
|
85 |
77 82 84
|
3eqtrd |
|
86 |
60 64 85
|
rspcedvd |
|
87 |
|
ovexd |
|
88 |
53 86 87
|
elrnmptd |
|
89 |
88
|
adantllr |
|
90 |
|
sneq |
|
91 |
90
|
oveq1d |
|
92 |
91
|
cbvmptv |
|
93 |
|
ovex |
|
94 |
92 93
|
elrnmpti |
|
95 |
94
|
biimpi |
|
96 |
95
|
adantl |
|
97 |
89 96
|
r19.29a |
|
98 |
97
|
ralrimiva |
|
99 |
|
eqid |
|
100 |
99
|
subginvcl |
|
101 |
100
|
ad5ant24 |
|
102 |
|
simpr |
|
103 |
102
|
sneqd |
|
104 |
103
|
oveq1d |
|
105 |
15
|
adantr |
|
106 |
100
|
ad4ant24 |
|
107 |
105 106
|
sseldd |
|
108 |
1 7 22 107
|
quslsm |
|
109 |
108
|
ad2antrr |
|
110 |
104 109
|
eqtr4d |
|
111 |
110
|
eqeq2d |
|
112 |
67
|
fveq2d |
|
113 |
|
eqid |
|
114 |
6 1 99 113
|
qusinv |
|
115 |
70 78 114
|
syl2anc |
|
116 |
112 115
|
eqtrd |
|
117 |
101 111 116
|
rspcedvd |
|
118 |
|
fvexd |
|
119 |
92 117 118
|
elrnmptd |
|
120 |
98 119
|
jca |
|
121 |
120
|
adantllr |
|
122 |
|
ovex |
|
123 |
33 122
|
elrnmpti |
|
124 |
123
|
biimpi |
|
125 |
124
|
adantl |
|
126 |
46 50 121 125
|
r19.29af2 |
|
127 |
126
|
ralrimiva |
|
128 |
|
eqid |
|
129 |
128 80 113
|
issubg2 |
|
130 |
129
|
biimpar |
|
131 |
13 35 42 127 130
|
syl13anc |
|
132 |
131 3
|
eleqtrrdi |
|