Metamath Proof Explorer


Theorem nsgqusf1olem1

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B = Base G
nsgqusf1o.s S = h SubGrp G | N h
nsgqusf1o.t T = SubGrp Q
nsgqusf1o.1 ˙ = toInc S
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q = G / 𝑠 G ~ QG N
nsgqusf1o.p ˙ = LSSum G
nsgqusf1o.e E = h S ran x h x ˙ N
nsgqusf1o.f F = f T a B | a ˙ N f
nsgqusf1o.n φ N NrmSGrp G
Assertion nsgqusf1olem1 φ h SubGrp G N h ran x h x ˙ N T

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B = Base G
2 nsgqusf1o.s S = h SubGrp G | N h
3 nsgqusf1o.t T = SubGrp Q
4 nsgqusf1o.1 ˙ = toInc S
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q = G / 𝑠 G ~ QG N
7 nsgqusf1o.p ˙ = LSSum G
8 nsgqusf1o.e E = h S ran x h x ˙ N
9 nsgqusf1o.f F = f T a B | a ˙ N f
10 nsgqusf1o.n φ N NrmSGrp G
11 6 qusgrp N NrmSGrp G Q Grp
12 10 11 syl φ Q Grp
13 12 ad2antrr φ h SubGrp G N h Q Grp
14 1 subgss h SubGrp G h B
15 14 ad2antlr φ h SubGrp G N h h B
16 15 sselda φ h SubGrp G N h x h x B
17 ovex G ~ QG N V
18 17 ecelqsi x B x G ~ QG N B / G ~ QG N
19 16 18 syl φ h SubGrp G N h x h x G ~ QG N B / G ~ QG N
20 nsgsubg N NrmSGrp G N SubGrp G
21 10 20 syl φ N SubGrp G
22 21 ad3antrrr φ h SubGrp G N h x h N SubGrp G
23 1 7 22 16 quslsm φ h SubGrp G N h x h x G ~ QG N = x ˙ N
24 6 a1i φ Q = G / 𝑠 G ~ QG N
25 1 a1i φ B = Base G
26 ovexd φ G ~ QG N V
27 subgrcl N SubGrp G G Grp
28 21 27 syl φ G Grp
29 24 25 26 28 qusbas φ B / G ~ QG N = Base Q
30 29 ad3antrrr φ h SubGrp G N h x h B / G ~ QG N = Base Q
31 19 23 30 3eltr3d φ h SubGrp G N h x h x ˙ N Base Q
32 31 ralrimiva φ h SubGrp G N h x h x ˙ N Base Q
33 eqid x h x ˙ N = x h x ˙ N
34 33 rnmptss x h x ˙ N Base Q ran x h x ˙ N Base Q
35 32 34 syl φ h SubGrp G N h ran x h x ˙ N Base Q
36 nfv x φ h SubGrp G N h
37 ovexd φ h SubGrp G N h x h x ˙ N V
38 eqid 0 G = 0 G
39 38 subg0cl h SubGrp G 0 G h
40 39 ne0d h SubGrp G h
41 40 ad2antlr φ h SubGrp G N h h
42 36 37 33 41 rnmptn0 φ h SubGrp G N h ran x h x ˙ N
43 nfmpt1 _ x x h x ˙ N
44 43 nfrn _ x ran x h x ˙ N
45 44 nfel2 x i ran x h x ˙ N
46 36 45 nfan x φ h SubGrp G N h i ran x h x ˙ N
47 44 nfel2 x i + Q j ran x h x ˙ N
48 44 47 nfralw x j ran x h x ˙ N i + Q j ran x h x ˙ N
49 44 nfel2 x inv g Q i ran x h x ˙ N
50 48 49 nfan x j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
51 sneq x = z x = z
52 51 oveq1d x = z x ˙ N = z ˙ N
53 52 cbvmptv x h x ˙ N = z h z ˙ N
54 simp-4r φ h SubGrp G N h x h i = x ˙ N h SubGrp G
55 54 ad2antrr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N h SubGrp G
56 simp-4r φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x h
57 simplr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N y h
58 eqid + G = + G
59 58 subgcl h SubGrp G x h y h x + G y h
60 55 56 57 59 syl3anc φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x + G y h
61 sneq z = x + G y z = x + G y
62 61 oveq1d z = x + G y z ˙ N = x + G y ˙ N
63 62 eqeq2d z = x + G y i + Q j = z ˙ N i + Q j = x + G y ˙ N
64 63 adantl φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N z = x + G y i + Q j = z ˙ N i + Q j = x + G y ˙ N
65 simpr φ h SubGrp G N h x h i = x ˙ N i = x ˙ N
66 23 adantr φ h SubGrp G N h x h i = x ˙ N x G ~ QG N = x ˙ N
67 65 66 eqtr4d φ h SubGrp G N h x h i = x ˙ N i = x G ~ QG N
68 67 ad2antrr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N i = x G ~ QG N
69 simpr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N j = y ˙ N
70 10 ad4antr φ h SubGrp G N h x h i = x ˙ N N NrmSGrp G
71 70 ad2antrr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N N NrmSGrp G
72 71 20 syl φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N N SubGrp G
73 55 14 syl φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N h B
74 73 57 sseldd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N y B
75 1 7 72 74 quslsm φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N y G ~ QG N = y ˙ N
76 69 75 eqtr4d φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N j = y G ~ QG N
77 68 76 oveq12d φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N i + Q j = x G ~ QG N + Q y G ~ QG N
78 16 adantr φ h SubGrp G N h x h i = x ˙ N x B
79 78 ad2antrr φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x B
80 eqid + Q = + Q
81 6 1 58 80 qusadd N NrmSGrp G x B y B x G ~ QG N + Q y G ~ QG N = x + G y G ~ QG N
82 71 79 74 81 syl3anc φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x G ~ QG N + Q y G ~ QG N = x + G y G ~ QG N
83 73 60 sseldd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x + G y B
84 1 7 72 83 quslsm φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N x + G y G ~ QG N = x + G y ˙ N
85 77 82 84 3eqtrd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N i + Q j = x + G y ˙ N
86 60 64 85 rspcedvd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N z h i + Q j = z ˙ N
87 ovexd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N i + Q j V
88 53 86 87 elrnmptd φ h SubGrp G N h x h i = x ˙ N y h j = y ˙ N i + Q j ran x h x ˙ N
89 88 adantllr φ h SubGrp G N h x h i = x ˙ N j ran x h x ˙ N y h j = y ˙ N i + Q j ran x h x ˙ N
90 sneq x = y x = y
91 90 oveq1d x = y x ˙ N = y ˙ N
92 91 cbvmptv x h x ˙ N = y h y ˙ N
93 ovex y ˙ N V
94 92 93 elrnmpti j ran x h x ˙ N y h j = y ˙ N
95 94 biimpi j ran x h x ˙ N y h j = y ˙ N
96 95 adantl φ h SubGrp G N h x h i = x ˙ N j ran x h x ˙ N y h j = y ˙ N
97 89 96 r19.29a φ h SubGrp G N h x h i = x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N
98 97 ralrimiva φ h SubGrp G N h x h i = x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N
99 eqid inv g G = inv g G
100 99 subginvcl h SubGrp G x h inv g G x h
101 100 ad5ant24 φ h SubGrp G N h x h i = x ˙ N inv g G x h
102 simpr φ h SubGrp G N h x h i = x ˙ N y = inv g G x y = inv g G x
103 102 sneqd φ h SubGrp G N h x h i = x ˙ N y = inv g G x y = inv g G x
104 103 oveq1d φ h SubGrp G N h x h i = x ˙ N y = inv g G x y ˙ N = inv g G x ˙ N
105 15 adantr φ h SubGrp G N h x h h B
106 100 ad4ant24 φ h SubGrp G N h x h inv g G x h
107 105 106 sseldd φ h SubGrp G N h x h inv g G x B
108 1 7 22 107 quslsm φ h SubGrp G N h x h inv g G x G ~ QG N = inv g G x ˙ N
109 108 ad2antrr φ h SubGrp G N h x h i = x ˙ N y = inv g G x inv g G x G ~ QG N = inv g G x ˙ N
110 104 109 eqtr4d φ h SubGrp G N h x h i = x ˙ N y = inv g G x y ˙ N = inv g G x G ~ QG N
111 110 eqeq2d φ h SubGrp G N h x h i = x ˙ N y = inv g G x inv g Q i = y ˙ N inv g Q i = inv g G x G ~ QG N
112 67 fveq2d φ h SubGrp G N h x h i = x ˙ N inv g Q i = inv g Q x G ~ QG N
113 eqid inv g Q = inv g Q
114 6 1 99 113 qusinv N NrmSGrp G x B inv g Q x G ~ QG N = inv g G x G ~ QG N
115 70 78 114 syl2anc φ h SubGrp G N h x h i = x ˙ N inv g Q x G ~ QG N = inv g G x G ~ QG N
116 112 115 eqtrd φ h SubGrp G N h x h i = x ˙ N inv g Q i = inv g G x G ~ QG N
117 101 111 116 rspcedvd φ h SubGrp G N h x h i = x ˙ N y h inv g Q i = y ˙ N
118 fvexd φ h SubGrp G N h x h i = x ˙ N inv g Q i V
119 92 117 118 elrnmptd φ h SubGrp G N h x h i = x ˙ N inv g Q i ran x h x ˙ N
120 98 119 jca φ h SubGrp G N h x h i = x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
121 120 adantllr φ h SubGrp G N h i ran x h x ˙ N x h i = x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
122 ovex x ˙ N V
123 33 122 elrnmpti i ran x h x ˙ N x h i = x ˙ N
124 123 biimpi i ran x h x ˙ N x h i = x ˙ N
125 124 adantl φ h SubGrp G N h i ran x h x ˙ N x h i = x ˙ N
126 46 50 121 125 r19.29af2 φ h SubGrp G N h i ran x h x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
127 126 ralrimiva φ h SubGrp G N h i ran x h x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
128 eqid Base Q = Base Q
129 128 80 113 issubg2 Q Grp ran x h x ˙ N SubGrp Q ran x h x ˙ N Base Q ran x h x ˙ N i ran x h x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N
130 129 biimpar Q Grp ran x h x ˙ N Base Q ran x h x ˙ N i ran x h x ˙ N j ran x h x ˙ N i + Q j ran x h x ˙ N inv g Q i ran x h x ˙ N ran x h x ˙ N SubGrp Q
131 13 35 42 127 130 syl13anc φ h SubGrp G N h ran x h x ˙ N SubGrp Q
132 131 3 eleqtrrdi φ h SubGrp G N h ran x h x ˙ N T