Metamath Proof Explorer


Theorem nsgqusf1olem1

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
nsgqusf1o.p = ( LSSum ‘ 𝐺 )
nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion nsgqusf1olem1 ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b 𝐵 = ( Base ‘ 𝐺 )
2 nsgqusf1o.s 𝑆 = { ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 }
3 nsgqusf1o.t 𝑇 = ( SubGrp ‘ 𝑄 )
4 nsgqusf1o.1 = ( le ‘ ( toInc ‘ 𝑆 ) )
5 nsgqusf1o.2 = ( le ‘ ( toInc ‘ 𝑇 ) )
6 nsgqusf1o.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
7 nsgqusf1o.p = ( LSSum ‘ 𝐺 )
8 nsgqusf1o.e 𝐸 = ( 𝑆 ↦ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
9 nsgqusf1o.f 𝐹 = ( 𝑓𝑇 ↦ { 𝑎𝐵 ∣ ( { 𝑎 } 𝑁 ) ∈ 𝑓 } )
10 nsgqusf1o.n ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
11 6 qusgrp ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp )
12 10 11 syl ( 𝜑𝑄 ∈ Grp )
13 12 ad2antrr ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → 𝑄 ∈ Grp )
14 1 subgss ( ∈ ( SubGrp ‘ 𝐺 ) → 𝐵 )
15 14 ad2antlr ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → 𝐵 )
16 15 sselda ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → 𝑥𝐵 )
17 ovex ( 𝐺 ~QG 𝑁 ) ∈ V
18 17 ecelqsi ( 𝑥𝐵 → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) )
19 16 18 syl ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) )
20 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
21 10 20 syl ( 𝜑𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
22 21 ad3antrrr ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
23 1 7 22 16 quslsm ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } 𝑁 ) )
24 6 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) )
25 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
26 ovexd ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V )
27 subgrcl ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
28 21 27 syl ( 𝜑𝐺 ∈ Grp )
29 24 25 26 28 qusbas ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
30 29 ad3antrrr ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
31 19 23 30 3eltr3d ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → ( { 𝑥 } 𝑁 ) ∈ ( Base ‘ 𝑄 ) )
32 31 ralrimiva ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ∀ 𝑥 ( { 𝑥 } 𝑁 ) ∈ ( Base ‘ 𝑄 ) )
33 eqid ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
34 33 rnmptss ( ∀ 𝑥 ( { 𝑥 } 𝑁 ) ∈ ( Base ‘ 𝑄 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) )
35 32 34 syl ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) )
36 nfv 𝑥 ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 )
37 ovexd ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → ( { 𝑥 } 𝑁 ) ∈ V )
38 eqid ( 0g𝐺 ) = ( 0g𝐺 )
39 38 subg0cl ( ∈ ( SubGrp ‘ 𝐺 ) → ( 0g𝐺 ) ∈ )
40 39 ne0d ( ∈ ( SubGrp ‘ 𝐺 ) → ≠ ∅ )
41 40 ad2antlr ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ≠ ∅ )
42 36 37 33 41 rnmptn0 ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ≠ ∅ )
43 nfmpt1 𝑥 ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
44 43 nfrn 𝑥 ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
45 44 nfel2 𝑥 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
46 36 45 nfan 𝑥 ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
47 44 nfel2 𝑥 ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
48 44 47 nfralw 𝑥𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
49 44 nfel2 𝑥 ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) )
50 48 49 nfan 𝑥 ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
51 sneq ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } )
52 51 oveq1d ( 𝑥 = 𝑧 → ( { 𝑥 } 𝑁 ) = ( { 𝑧 } 𝑁 ) )
53 52 cbvmptv ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑧 ↦ ( { 𝑧 } 𝑁 ) )
54 simp-4r ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ∈ ( SubGrp ‘ 𝐺 ) )
55 54 ad2antrr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ∈ ( SubGrp ‘ 𝐺 ) )
56 simp-4r ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑥 )
57 simplr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑦 )
58 eqid ( +g𝐺 ) = ( +g𝐺 )
59 58 subgcl ( ( ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑦 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ )
60 55 56 57 59 syl3anc ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ )
61 sneq ( 𝑧 = ( 𝑥 ( +g𝐺 ) 𝑦 ) → { 𝑧 } = { ( 𝑥 ( +g𝐺 ) 𝑦 ) } )
62 61 oveq1d ( 𝑧 = ( 𝑥 ( +g𝐺 ) 𝑦 ) → ( { 𝑧 } 𝑁 ) = ( { ( 𝑥 ( +g𝐺 ) 𝑦 ) } 𝑁 ) )
63 62 eqeq2d ( 𝑧 = ( 𝑥 ( +g𝐺 ) 𝑦 ) → ( ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { 𝑧 } 𝑁 ) ↔ ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g𝐺 ) 𝑦 ) } 𝑁 ) ) )
64 63 adantl ( ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) ∧ 𝑧 = ( 𝑥 ( +g𝐺 ) 𝑦 ) ) → ( ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { 𝑧 } 𝑁 ) ↔ ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g𝐺 ) 𝑦 ) } 𝑁 ) ) )
65 simpr ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑖 = ( { 𝑥 } 𝑁 ) )
66 23 adantr ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } 𝑁 ) )
67 65 66 eqtr4d ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
68 67 ad2antrr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
69 simpr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑗 = ( { 𝑦 } 𝑁 ) )
70 10 ad4antr ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
71 70 ad2antrr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
72 71 20 syl ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
73 55 14 syl ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝐵 )
74 73 57 sseldd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑦𝐵 )
75 1 7 72 74 quslsm ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑦 } 𝑁 ) )
76 69 75 eqtr4d ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑗 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) )
77 68 76 oveq12d ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) )
78 16 adantr ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → 𝑥𝐵 )
79 78 ad2antrr ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → 𝑥𝐵 )
80 eqid ( +g𝑄 ) = ( +g𝑄 )
81 6 1 58 80 qusadd ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥𝐵𝑦𝐵 ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) )
82 71 79 74 81 syl3anc ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) )
83 73 60 sseldd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
84 1 7 72 83 quslsm ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( 𝑥 ( +g𝐺 ) 𝑦 ) } 𝑁 ) )
85 77 82 84 3eqtrd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g𝐺 ) 𝑦 ) } 𝑁 ) )
86 60 64 85 rspcedvd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ∃ 𝑧 ( 𝑖 ( +g𝑄 ) 𝑗 ) = ( { 𝑧 } 𝑁 ) )
87 ovexd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ V )
88 53 86 87 elrnmptd ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
89 88 adantllr ( ( ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) ∧ 𝑦 ) ∧ 𝑗 = ( { 𝑦 } 𝑁 ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
90 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
91 90 oveq1d ( 𝑥 = 𝑦 → ( { 𝑥 } 𝑁 ) = ( { 𝑦 } 𝑁 ) )
92 91 cbvmptv ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) = ( 𝑦 ↦ ( { 𝑦 } 𝑁 ) )
93 ovex ( { 𝑦 } 𝑁 ) ∈ V
94 92 93 elrnmpti ( 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ↔ ∃ 𝑦 𝑗 = ( { 𝑦 } 𝑁 ) )
95 94 biimpi ( 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) → ∃ 𝑦 𝑗 = ( { 𝑦 } 𝑁 ) )
96 95 adantl ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → ∃ 𝑦 𝑗 = ( { 𝑦 } 𝑁 ) )
97 89 96 r19.29a ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
98 97 ralrimiva ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
99 eqid ( invg𝐺 ) = ( invg𝐺 )
100 99 subginvcl ( ( ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ )
101 100 ad5ant24 ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ )
102 simpr ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) )
103 102 sneqd ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → { 𝑦 } = { ( ( invg𝐺 ) ‘ 𝑥 ) } )
104 103 oveq1d ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → ( { 𝑦 } 𝑁 ) = ( { ( ( invg𝐺 ) ‘ 𝑥 ) } 𝑁 ) )
105 15 adantr ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → 𝐵 )
106 100 ad4ant24 ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ )
107 105 106 sseldd ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐵 )
108 1 7 22 107 quslsm ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) → [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( ( invg𝐺 ) ‘ 𝑥 ) } 𝑁 ) )
109 108 ad2antrr ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( ( invg𝐺 ) ‘ 𝑥 ) } 𝑁 ) )
110 104 109 eqtr4d ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → ( { 𝑦 } 𝑁 ) = [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) )
111 110 eqeq2d ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) ∧ 𝑦 = ( ( invg𝐺 ) ‘ 𝑥 ) ) → ( ( ( invg𝑄 ) ‘ 𝑖 ) = ( { 𝑦 } 𝑁 ) ↔ ( ( invg𝑄 ) ‘ 𝑖 ) = [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) )
112 67 fveq2d ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝑄 ) ‘ 𝑖 ) = ( ( invg𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) )
113 eqid ( invg𝑄 ) = ( invg𝑄 )
114 6 1 99 113 qusinv ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥𝐵 ) → ( ( invg𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) )
115 70 78 114 syl2anc ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) )
116 112 115 eqtrd ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝑄 ) ‘ 𝑖 ) = [ ( ( invg𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) )
117 101 111 116 rspcedvd ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ∃ 𝑦 ( ( invg𝑄 ) ‘ 𝑖 ) = ( { 𝑦 } 𝑁 ) )
118 fvexd ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝑄 ) ‘ 𝑖 ) ∈ V )
119 92 117 118 elrnmptd ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) )
120 98 119 jca ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) )
121 120 adantllr ( ( ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) ∧ 𝑥 ) ∧ 𝑖 = ( { 𝑥 } 𝑁 ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) )
122 ovex ( { 𝑥 } 𝑁 ) ∈ V
123 33 122 elrnmpti ( 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ↔ ∃ 𝑥 𝑖 = ( { 𝑥 } 𝑁 ) )
124 123 biimpi ( 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) → ∃ 𝑥 𝑖 = ( { 𝑥 } 𝑁 ) )
125 124 adantl ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → ∃ 𝑥 𝑖 = ( { 𝑥 } 𝑁 ) )
126 46 50 121 125 r19.29af2 ( ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) ∧ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) )
127 126 ralrimiva ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ∀ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) )
128 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
129 128 80 113 issubg2 ( 𝑄 ∈ Grp → ( ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ↔ ( ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ∧ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ≠ ∅ ∧ ∀ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) ) ) )
130 129 biimpar ( ( 𝑄 ∈ Grp ∧ ( ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ∧ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ≠ ∅ ∧ ∀ 𝑖 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ( 𝑖 ( +g𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∧ ( ( invg𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ) ) ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) )
131 13 35 42 127 130 syl13anc ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) )
132 131 3 eleqtrrdi ( ( ( 𝜑 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ) → ran ( 𝑥 ↦ ( { 𝑥 } 𝑁 ) ) ∈ 𝑇 )