Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nsgqusf1o.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
3 |
|
nsgqusf1o.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
4 |
|
nsgqusf1o.1 |
⊢ ≤ = ( le ‘ ( toInc ‘ 𝑆 ) ) |
5 |
|
nsgqusf1o.2 |
⊢ ≲ = ( le ‘ ( toInc ‘ 𝑇 ) ) |
6 |
|
nsgqusf1o.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
7 |
|
nsgqusf1o.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
8 |
|
nsgqusf1o.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
9 |
|
nsgqusf1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
10 |
|
nsgqusf1o.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
11 |
6
|
qusgrp |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → 𝑄 ∈ Grp ) |
14 |
1
|
subgss |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) → ℎ ⊆ 𝐵 ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ℎ ⊆ 𝐵 ) |
16 |
15
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → 𝑥 ∈ 𝐵 ) |
17 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑁 ) ∈ V |
18 |
17
|
ecelqsi |
⊢ ( 𝑥 ∈ 𝐵 → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) ) |
19 |
16 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) ) |
20 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
10 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
22 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
23 |
1 7 22 16
|
quslsm |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
24 |
6
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
25 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
26 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
27 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
28 |
21 27
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
29 |
24 25 26 28
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
30 |
29
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
31 |
19 23 30
|
3eltr3d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ ( Base ‘ 𝑄 ) ) |
32 |
31
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ∀ 𝑥 ∈ ℎ ( { 𝑥 } ⊕ 𝑁 ) ∈ ( Base ‘ 𝑄 ) ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
34 |
33
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ℎ ( { 𝑥 } ⊕ 𝑁 ) ∈ ( Base ‘ 𝑄 ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ) |
35 |
32 34
|
syl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ) |
36 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) |
37 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ( { 𝑥 } ⊕ 𝑁 ) ∈ V ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
39 |
38
|
subg0cl |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ℎ ) |
40 |
39
|
ne0d |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) → ℎ ≠ ∅ ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ℎ ≠ ∅ ) |
42 |
36 37 33 41
|
rnmptn0 |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ≠ ∅ ) |
43 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
44 |
43
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
45 |
44
|
nfel2 |
⊢ Ⅎ 𝑥 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
46 |
36 45
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
47 |
44
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
48 |
44 47
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
49 |
44
|
nfel2 |
⊢ Ⅎ 𝑥 ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
50 |
48 49
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
51 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
52 |
51
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( { 𝑥 } ⊕ 𝑁 ) = ( { 𝑧 } ⊕ 𝑁 ) ) |
53 |
52
|
cbvmptv |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑧 ∈ ℎ ↦ ( { 𝑧 } ⊕ 𝑁 ) ) |
54 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ℎ ∈ ( SubGrp ‘ 𝐺 ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ℎ ∈ ( SubGrp ‘ 𝐺 ) ) |
56 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑥 ∈ ℎ ) |
57 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑦 ∈ ℎ ) |
58 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
59 |
58
|
subgcl |
⊢ ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℎ ∧ 𝑦 ∈ ℎ ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ℎ ) |
60 |
55 56 57 59
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ℎ ) |
61 |
|
sneq |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → { 𝑧 } = { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ) |
62 |
61
|
oveq1d |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( { 𝑧 } ⊕ 𝑁 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) |
63 |
62
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) → ( ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { 𝑧 } ⊕ 𝑁 ) ↔ ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) ∧ 𝑧 = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { 𝑧 } ⊕ 𝑁 ) ↔ ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) ) |
65 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
66 |
23
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
67 |
65 66
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑖 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
69 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) |
70 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
72 |
71 20
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
73 |
55 14
|
syl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ℎ ⊆ 𝐵 ) |
74 |
73 57
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑦 ∈ 𝐵 ) |
75 |
1 7 72 74
|
quslsm |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑦 } ⊕ 𝑁 ) ) |
76 |
69 75
|
eqtr4d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑗 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) |
77 |
68 76
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) ) |
78 |
16
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
80 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
81 |
6 1 58 80
|
qusadd |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
82 |
71 79 74 81
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
83 |
73 60
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
84 |
1 7 72 83
|
quslsm |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) |
85 |
77 82 84
|
3eqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) } ⊕ 𝑁 ) ) |
86 |
60 64 85
|
rspcedvd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ∃ 𝑧 ∈ ℎ ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) = ( { 𝑧 } ⊕ 𝑁 ) ) |
87 |
|
ovexd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ V ) |
88 |
53 86 87
|
elrnmptd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
89 |
88
|
adantllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ∧ 𝑦 ∈ ℎ ) ∧ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
90 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
91 |
90
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } ⊕ 𝑁 ) = ( { 𝑦 } ⊕ 𝑁 ) ) |
92 |
91
|
cbvmptv |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑦 ∈ ℎ ↦ ( { 𝑦 } ⊕ 𝑁 ) ) |
93 |
|
ovex |
⊢ ( { 𝑦 } ⊕ 𝑁 ) ∈ V |
94 |
92 93
|
elrnmpti |
⊢ ( 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑦 ∈ ℎ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) |
95 |
94
|
biimpi |
⊢ ( 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → ∃ 𝑦 ∈ ℎ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) |
96 |
95
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ∃ 𝑦 ∈ ℎ 𝑗 = ( { 𝑦 } ⊕ 𝑁 ) ) |
97 |
89 96
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
98 |
97
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
99 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
100 |
99
|
subginvcl |
⊢ ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℎ ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℎ ) |
101 |
100
|
ad5ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℎ ) |
102 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) |
103 |
102
|
sneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → { 𝑦 } = { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
104 |
103
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( { 𝑦 } ⊕ 𝑁 ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
105 |
15
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ℎ ⊆ 𝐵 ) |
106 |
100
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℎ ) |
107 |
105 106
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
108 |
1 7 22 107
|
quslsm |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
109 |
108
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) = ( { ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) } ⊕ 𝑁 ) ) |
110 |
104 109
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( { 𝑦 } ⊕ 𝑁 ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
111 |
110
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) ∧ 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) = ( { 𝑦 } ⊕ 𝑁 ) ↔ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) ) |
112 |
67
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) = ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
113 |
|
eqid |
⊢ ( invg ‘ 𝑄 ) = ( invg ‘ 𝑄 ) |
114 |
6 1 99 113
|
qusinv |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
115 |
70 78 114
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝑄 ) ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
116 |
112 115
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ] ( 𝐺 ~QG 𝑁 ) ) |
117 |
101 111 116
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ∃ 𝑦 ∈ ℎ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) = ( { 𝑦 } ⊕ 𝑁 ) ) |
118 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ V ) |
119 |
92 117 118
|
elrnmptd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
120 |
98 119
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
121 |
120
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ∧ 𝑥 ∈ ℎ ) ∧ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
122 |
|
ovex |
⊢ ( { 𝑥 } ⊕ 𝑁 ) ∈ V |
123 |
33 122
|
elrnmpti |
⊢ ( 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ ℎ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
124 |
123
|
biimpi |
⊢ ( 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → ∃ 𝑥 ∈ ℎ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
125 |
124
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ∃ 𝑥 ∈ ℎ 𝑖 = ( { 𝑥 } ⊕ 𝑁 ) ) |
126 |
46 50 121 125
|
r19.29af2 |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
127 |
126
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ∀ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
128 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
129 |
128 80 113
|
issubg2 |
⊢ ( 𝑄 ∈ Grp → ( ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ↔ ( ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ∧ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ≠ ∅ ∧ ∀ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) ) ) |
130 |
129
|
biimpar |
⊢ ( ( 𝑄 ∈ Grp ∧ ( ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ⊆ ( Base ‘ 𝑄 ) ∧ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ≠ ∅ ∧ ∀ 𝑖 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( ∀ 𝑗 ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ( 𝑖 ( +g ‘ 𝑄 ) 𝑗 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∧ ( ( invg ‘ 𝑄 ) ‘ 𝑖 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
131 |
13 35 42 127 130
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ ( SubGrp ‘ 𝑄 ) ) |
132 |
131 3
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |