| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
| 2 |
|
qusinv.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
| 3 |
|
qusinv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
|
qusinv.n |
⊢ 𝑁 = ( invg ‘ 𝐻 ) |
| 5 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 8 |
2 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 12 |
1 2 10 11
|
qusadd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 13 |
9 12
|
mpd3an3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 15 |
2 10 14 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 16 |
7 15
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 |
16
|
eceq1d |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 18 |
1 14
|
qus0 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) |
| 20 |
13 17 19
|
3eqtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) |
| 21 |
1
|
qusgrp |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐻 ∈ Grp ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 24 |
1 2 23
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 25 |
1 2 23
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 26 |
9 25
|
syldan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 28 |
23 11 27 4
|
grpinvid1 |
⊢ ( ( 𝐻 ∈ Grp ∧ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 29 |
22 24 26 28
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g ‘ 𝐻 ) ) ) |
| 30 |
20 29
|
mpbird |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼 ‘ 𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) |