Metamath Proof Explorer


Theorem qusinv

Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
qusinv.v 𝑉 = ( Base ‘ 𝐺 )
qusinv.i 𝐼 = ( invg𝐺 )
qusinv.n 𝑁 = ( invg𝐻 )
Assertion qusinv ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) )

Proof

Step Hyp Ref Expression
1 qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
2 qusinv.v 𝑉 = ( Base ‘ 𝐺 )
3 qusinv.i 𝐼 = ( invg𝐺 )
4 qusinv.n 𝑁 = ( invg𝐻 )
5 nsgsubg ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
6 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
7 5 6 syl ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
8 2 3 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝑉 ) → ( 𝐼𝑋 ) ∈ 𝑉 )
9 7 8 sylan ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝐼𝑋 ) ∈ 𝑉 )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 eqid ( +g𝐻 ) = ( +g𝐻 )
12 1 2 10 11 qusadd ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ∧ ( 𝐼𝑋 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) )
13 9 12 mpd3an3 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) )
14 eqid ( 0g𝐺 ) = ( 0g𝐺 )
15 2 10 14 3 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝑉 ) → ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) = ( 0g𝐺 ) )
16 7 15 sylan ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) = ( 0g𝐺 ) )
17 16 eceq1d ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝑆 ) )
18 1 14 qus0 ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g𝐻 ) )
19 18 adantr ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g𝐻 ) )
20 13 17 19 3eqtrd ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g𝐻 ) )
21 1 qusgrp ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp )
22 21 adantr ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → 𝐻 ∈ Grp )
23 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
24 1 2 23 quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
25 1 2 23 quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐼𝑋 ) ∈ 𝑉 ) → [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
26 9 25 syldan ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
27 eqid ( 0g𝐻 ) = ( 0g𝐻 )
28 23 11 27 4 grpinvid1 ( ( 𝐻 ∈ Grp ∧ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g𝐻 ) ) )
29 22 24 26 28 syl3anc ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) ) = ( 0g𝐻 ) ) )
30 20 29 mpbird ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → ( 𝑁 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝐼𝑋 ) ] ( 𝐺 ~QG 𝑆 ) )