Metamath Proof Explorer


Theorem nsgqusf1olem2

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B = Base G
nsgqusf1o.s S = h SubGrp G | N h
nsgqusf1o.t T = SubGrp Q
nsgqusf1o.1 ˙ = toInc S
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q = G / 𝑠 G ~ QG N
nsgqusf1o.p ˙ = LSSum G
nsgqusf1o.e E = h S ran x h x ˙ N
nsgqusf1o.f F = f T a B | a ˙ N f
nsgqusf1o.n φ N NrmSGrp G
Assertion nsgqusf1olem2 φ ran E = T

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B = Base G
2 nsgqusf1o.s S = h SubGrp G | N h
3 nsgqusf1o.t T = SubGrp Q
4 nsgqusf1o.1 ˙ = toInc S
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q = G / 𝑠 G ~ QG N
7 nsgqusf1o.p ˙ = LSSum G
8 nsgqusf1o.e E = h S ran x h x ˙ N
9 nsgqusf1o.f F = f T a B | a ˙ N f
10 nsgqusf1o.n φ N NrmSGrp G
11 simpr φ h S f = ran x h x ˙ N f = ran x h x ˙ N
12 2 rabeq2i h S h SubGrp G N h
13 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem1 φ h SubGrp G N h ran x h x ˙ N T
14 13 anasss φ h SubGrp G N h ran x h x ˙ N T
15 14 3 eleqtrdi φ h SubGrp G N h ran x h x ˙ N SubGrp Q
16 12 15 sylan2b φ h S ran x h x ˙ N SubGrp Q
17 16 adantr φ h S f = ran x h x ˙ N ran x h x ˙ N SubGrp Q
18 11 17 eqeltrd φ h S f = ran x h x ˙ N f SubGrp Q
19 18 r19.29an φ h S f = ran x h x ˙ N f SubGrp Q
20 sseq2 h = a B | a ˙ N f N h N a B | a ˙ N f
21 10 adantr φ f SubGrp Q N NrmSGrp G
22 simpr φ f SubGrp Q f SubGrp Q
23 1 6 7 21 22 nsgmgclem φ f SubGrp Q a B | a ˙ N f SubGrp G
24 3 eleq2i f T f SubGrp Q
25 nsgsubg N NrmSGrp G N SubGrp G
26 10 25 syl φ N SubGrp G
27 1 subgss N SubGrp G N B
28 26 27 syl φ N B
29 28 adantr φ f T N B
30 26 ad2antrr φ f T a N N SubGrp G
31 7 grplsmid N SubGrp G a N a ˙ N = N
32 30 31 sylancom φ f T a N a ˙ N = N
33 24 biimpi f T f SubGrp Q
34 6 nsgqus0 N NrmSGrp G f SubGrp Q N f
35 10 33 34 syl2an φ f T N f
36 35 adantr φ f T a N N f
37 32 36 eqeltrd φ f T a N a ˙ N f
38 29 37 ssrabdv φ f T N a B | a ˙ N f
39 24 38 sylan2br φ f SubGrp Q N a B | a ˙ N f
40 20 23 39 elrabd φ f SubGrp Q a B | a ˙ N f h SubGrp G | N h
41 40 2 eleqtrrdi φ f SubGrp Q a B | a ˙ N f S
42 mpteq1 h = a B | a ˙ N f x h x ˙ N = x a B | a ˙ N f x ˙ N
43 42 rneqd h = a B | a ˙ N f ran x h x ˙ N = ran x a B | a ˙ N f x ˙ N
44 43 eqeq2d h = a B | a ˙ N f f = ran x h x ˙ N f = ran x a B | a ˙ N f x ˙ N
45 44 adantl φ f SubGrp Q h = a B | a ˙ N f f = ran x h x ˙ N f = ran x a B | a ˙ N f x ˙ N
46 eqid Base Q = Base Q
47 46 subgss f SubGrp Q f Base Q
48 47 adantl φ f SubGrp Q f Base Q
49 48 sselda φ f SubGrp Q i f i Base Q
50 6 a1i φ f SubGrp Q i f Q = G / 𝑠 G ~ QG N
51 1 a1i φ f SubGrp Q i f B = Base G
52 ovexd φ f SubGrp Q i f G ~ QG N V
53 subgrcl N SubGrp G G Grp
54 26 53 syl φ G Grp
55 54 ad2antrr φ f SubGrp Q i f G Grp
56 50 51 52 55 qusbas φ f SubGrp Q i f B / G ~ QG N = Base Q
57 49 56 eleqtrrd φ f SubGrp Q i f i B / G ~ QG N
58 elqsi i B / G ~ QG N x B i = x G ~ QG N
59 57 58 syl φ f SubGrp Q i f x B i = x G ~ QG N
60 sneq a = x a = x
61 60 oveq1d a = x a ˙ N = x ˙ N
62 61 eleq1d a = x a ˙ N f x ˙ N f
63 simplr φ f SubGrp Q i f x B i = x G ~ QG N x B
64 simpr φ f SubGrp Q i f x B i = x G ~ QG N i = x G ~ QG N
65 26 ad4antr φ f SubGrp Q i f x B i = x G ~ QG N N SubGrp G
66 1 7 65 63 quslsm φ f SubGrp Q i f x B i = x G ~ QG N x G ~ QG N = x ˙ N
67 64 66 eqtrd φ f SubGrp Q i f x B i = x G ~ QG N i = x ˙ N
68 simpllr φ f SubGrp Q i f x B i = x G ~ QG N i f
69 67 68 eqeltrrd φ f SubGrp Q i f x B i = x G ~ QG N x ˙ N f
70 62 63 69 elrabd φ f SubGrp Q i f x B i = x G ~ QG N x a B | a ˙ N f
71 70 67 jca φ f SubGrp Q i f x B i = x G ~ QG N x a B | a ˙ N f i = x ˙ N
72 71 expl φ f SubGrp Q i f x B i = x G ~ QG N x a B | a ˙ N f i = x ˙ N
73 72 reximdv2 φ f SubGrp Q i f x B i = x G ~ QG N x a B | a ˙ N f i = x ˙ N
74 59 73 mpd φ f SubGrp Q i f x a B | a ˙ N f i = x ˙ N
75 simplr φ f SubGrp Q x a B | a ˙ N f i = x ˙ N x a B | a ˙ N f
76 62 elrab x a B | a ˙ N f x B x ˙ N f
77 75 76 sylib φ f SubGrp Q x a B | a ˙ N f i = x ˙ N x B x ˙ N f
78 simpllr φ f SubGrp Q i = x ˙ N x B x ˙ N f i = x ˙ N
79 simpr φ f SubGrp Q i = x ˙ N x B x ˙ N f x ˙ N f
80 78 79 eqeltrd φ f SubGrp Q i = x ˙ N x B x ˙ N f i f
81 80 anasss φ f SubGrp Q i = x ˙ N x B x ˙ N f i f
82 81 adantllr φ f SubGrp Q x a B | a ˙ N f i = x ˙ N x B x ˙ N f i f
83 77 82 mpdan φ f SubGrp Q x a B | a ˙ N f i = x ˙ N i f
84 83 r19.29an φ f SubGrp Q x a B | a ˙ N f i = x ˙ N i f
85 74 84 impbida φ f SubGrp Q i f x a B | a ˙ N f i = x ˙ N
86 eqid x a B | a ˙ N f x ˙ N = x a B | a ˙ N f x ˙ N
87 86 elrnmpt i V i ran x a B | a ˙ N f x ˙ N x a B | a ˙ N f i = x ˙ N
88 87 elv i ran x a B | a ˙ N f x ˙ N x a B | a ˙ N f i = x ˙ N
89 85 88 bitr4di φ f SubGrp Q i f i ran x a B | a ˙ N f x ˙ N
90 89 eqrdv φ f SubGrp Q f = ran x a B | a ˙ N f x ˙ N
91 41 45 90 rspcedvd φ f SubGrp Q h S f = ran x h x ˙ N
92 19 91 impbida φ h S f = ran x h x ˙ N f SubGrp Q
93 92 abbidv φ f | h S f = ran x h x ˙ N = f | f SubGrp Q
94 8 rnmpt ran E = f | h S f = ran x h x ˙ N
95 abid1 SubGrp Q = f | f SubGrp Q
96 93 94 95 3eqtr4g φ ran E = SubGrp Q
97 96 3 eqtr4di φ ran E = T