Step |
Hyp |
Ref |
Expression |
1 |
|
nsgqusf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nsgqusf1o.s |
⊢ 𝑆 = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝑁 ⊆ ℎ } |
3 |
|
nsgqusf1o.t |
⊢ 𝑇 = ( SubGrp ‘ 𝑄 ) |
4 |
|
nsgqusf1o.1 |
⊢ ≤ = ( le ‘ ( toInc ‘ 𝑆 ) ) |
5 |
|
nsgqusf1o.2 |
⊢ ≲ = ( le ‘ ( toInc ‘ 𝑇 ) ) |
6 |
|
nsgqusf1o.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
7 |
|
nsgqusf1o.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
8 |
|
nsgqusf1o.e |
⊢ 𝐸 = ( ℎ ∈ 𝑆 ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
9 |
|
nsgqusf1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝑇 ↦ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
10 |
|
nsgqusf1o.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
11 |
9
|
elrnmpt |
⊢ ( ℎ ∈ V → ( ℎ ∈ ran 𝐹 ↔ ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
12 |
11
|
elv |
⊢ ( ℎ ∈ ran 𝐹 ↔ ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
13 |
2
|
rabeq2i |
⊢ ( ℎ ∈ 𝑆 ↔ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
nsgqusf1olem1 |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ∈ 𝑇 ) |
15 |
|
eleq2 |
⊢ ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ↔ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ) |
16 |
15
|
rabbidv |
⊢ ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↔ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } ) ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑓 = ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ↔ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) |
20 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
21 |
20
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
22 |
21
|
nfel2 |
⊢ Ⅎ 𝑥 ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
23 |
19 22
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
24 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
28 |
27
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → 𝐺 ∈ Grp ) |
29 |
28
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝐺 ∈ Grp ) |
30 |
1
|
subgss |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) → ℎ ⊆ 𝐵 ) |
31 |
30
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) → ℎ ⊆ 𝐵 ) |
32 |
31
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → 𝑥 ∈ 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
34 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → 𝑎 ∈ 𝐵 ) |
35 |
34
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑎 ∈ 𝐵 ) |
36 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
37 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
38 |
1 36 37
|
grpasscan1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ) = 𝑎 ) |
39 |
29 33 35 38
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ) = 𝑎 ) |
40 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ℎ ∈ ( SubGrp ‘ 𝐺 ) ) |
41 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ∈ ℎ ) |
42 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑁 ⊆ ℎ ) |
43 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝐵 ) |
44 |
25 43
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐵 ) |
45 |
44
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑁 ⊆ 𝐵 ) |
46 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) |
47 |
1 46
|
eqger |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er 𝐵 ) |
48 |
25 47
|
syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er 𝐵 ) |
49 |
48
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → ( 𝐺 ~QG 𝑁 ) Er 𝐵 ) |
50 |
49
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ( 𝐺 ~QG 𝑁 ) Er 𝐵 ) |
51 |
49 34
|
erth |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → ( 𝑎 ( 𝐺 ~QG 𝑁 ) 𝑥 ↔ [ 𝑎 ] ( 𝐺 ~QG 𝑁 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
52 |
25
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
53 |
1 7 52 34
|
quslsm |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → [ 𝑎 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) |
54 |
1 7 52 32
|
quslsm |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
55 |
53 54
|
eqeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑁 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ↔ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
56 |
51 55
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) → ( 𝑎 ( 𝐺 ~QG 𝑁 ) 𝑥 ↔ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) ) |
57 |
56
|
biimpar |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑎 ( 𝐺 ~QG 𝑁 ) 𝑥 ) |
58 |
50 57
|
ersym |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑥 ( 𝐺 ~QG 𝑁 ) 𝑎 ) |
59 |
1 37 36 46
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵 ) → ( 𝑥 ( 𝐺 ~QG 𝑁 ) 𝑎 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ 𝑁 ) ) ) |
60 |
59
|
biimpa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵 ) ∧ 𝑥 ( 𝐺 ~QG 𝑁 ) 𝑎 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ 𝑁 ) ) |
61 |
60
|
simp3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵 ) ∧ 𝑥 ( 𝐺 ~QG 𝑁 ) 𝑎 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ 𝑁 ) |
62 |
29 45 58 61
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ 𝑁 ) |
63 |
42 62
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ ℎ ) |
64 |
36
|
subgcl |
⊢ ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℎ ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ∈ ℎ ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ) ∈ ℎ ) |
65 |
40 41 63 64
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑎 ) ) ∈ ℎ ) |
66 |
39 65
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑎 ∈ ℎ ) |
67 |
66
|
adantllr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) ∧ 𝑥 ∈ ℎ ) ∧ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) → 𝑎 ∈ ℎ ) |
68 |
|
eqid |
⊢ ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) = ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) |
69 |
|
ovex |
⊢ ( { 𝑥 } ⊕ 𝑁 ) ∈ V |
70 |
68 69
|
elrnmpti |
⊢ ( ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ ∃ 𝑥 ∈ ℎ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
71 |
70
|
biimpi |
⊢ ( ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) → ∃ 𝑥 ∈ ℎ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
72 |
71
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → ∃ 𝑥 ∈ ℎ ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
73 |
23 67 72
|
r19.29af |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) → 𝑎 ∈ ℎ ) |
74 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑎 ∈ ℎ ) → 𝑎 ∈ ℎ ) |
75 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ V ) |
76 |
|
sneq |
⊢ ( 𝑥 = 𝑎 → { 𝑥 } = { 𝑎 } ) |
77 |
76
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( { 𝑥 } ⊕ 𝑁 ) = ( { 𝑎 } ⊕ 𝑁 ) ) |
78 |
77
|
eqcomd |
⊢ ( 𝑥 = 𝑎 → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
79 |
78
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑎 ∈ ℎ ) ∧ 𝑥 = 𝑎 ) → ( { 𝑎 } ⊕ 𝑁 ) = ( { 𝑥 } ⊕ 𝑁 ) ) |
80 |
68 74 75 79
|
elrnmptdv |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑎 ∈ ℎ ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ) |
81 |
73 80
|
impbida |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) ∧ 𝑎 ∈ 𝐵 ) → ( ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) ↔ 𝑎 ∈ ℎ ) ) |
82 |
81
|
rabbidva |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } = { 𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ } ) |
83 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) → ℎ ⊆ 𝐵 ) |
84 |
|
dfss7 |
⊢ ( ℎ ⊆ 𝐵 ↔ { 𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ } = ℎ ) |
85 |
83 84
|
sylib |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) → { 𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ } = ℎ ) |
86 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → { 𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ } = ℎ ) |
87 |
82 86
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ⊕ 𝑁 ) ) } ) |
88 |
14 18 87
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑁 ⊆ ℎ ) → ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
89 |
88
|
anasss |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) → ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
90 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
91 |
3
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑇 ↔ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
92 |
91
|
biimpi |
⊢ ( 𝑓 ∈ 𝑇 → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) |
94 |
1 6 7 90 93
|
nsgmgclem |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) |
96 |
|
eleq1 |
⊢ ( ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } → ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↔ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↔ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ∈ ( SubGrp ‘ 𝐺 ) ) ) |
98 |
95 97
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ℎ ∈ ( SubGrp ‘ 𝐺 ) ) |
99 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ 𝐵 ) |
100 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
101 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
102 |
7
|
grplsmid |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
103 |
100 101 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) = 𝑁 ) |
104 |
6
|
nsgqus0 |
⊢ ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑓 ∈ ( SubGrp ‘ 𝑄 ) ) → 𝑁 ∈ 𝑓 ) |
105 |
90 93 104
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ 𝑓 ) |
106 |
105
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → 𝑁 ∈ 𝑓 ) |
107 |
103 106
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ 𝑎 ∈ 𝑁 ) → ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 ) |
108 |
99 107
|
ssrabdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
109 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → 𝑁 ⊆ { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
110 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) |
111 |
109 110
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → 𝑁 ⊆ ℎ ) |
112 |
98 111
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) ∧ ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) |
113 |
112
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) → ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ) |
114 |
89 113
|
impbida |
⊢ ( 𝜑 → ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ⊆ ℎ ) ↔ ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
115 |
13 114
|
syl5bb |
⊢ ( 𝜑 → ( ℎ ∈ 𝑆 ↔ ∃ 𝑓 ∈ 𝑇 ℎ = { 𝑎 ∈ 𝐵 ∣ ( { 𝑎 } ⊕ 𝑁 ) ∈ 𝑓 } ) ) |
116 |
12 115
|
bitr4id |
⊢ ( 𝜑 → ( ℎ ∈ ran 𝐹 ↔ ℎ ∈ 𝑆 ) ) |
117 |
116
|
eqrdv |
⊢ ( 𝜑 → ran 𝐹 = 𝑆 ) |