Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss7 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) | |
| 2 | incom | ⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) | |
| 3 | dfin5 | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } | |
| 4 | 2 3 | eqtri | ⊢ ( 𝐵 ∩ 𝐴 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } |
| 5 | 4 | eqeq1i | ⊢ ( ( 𝐵 ∩ 𝐴 ) = 𝐵 ↔ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = 𝐵 ) |
| 6 | 1 5 | bitri | ⊢ ( 𝐵 ⊆ 𝐴 ↔ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = 𝐵 ) |