Step |
Hyp |
Ref |
Expression |
1 |
|
nsgmgc.b |
|
2 |
|
nsgmgc.s |
|
3 |
|
nsgmgc.t |
|
4 |
|
nsgmgc.j |
Could not format J = ( V MGalConn W ) : No typesetting found for |- J = ( V MGalConn W ) with typecode |- |
5 |
|
nsgmgc.v |
|
6 |
|
nsgmgc.w |
|
7 |
|
nsgmgc.q |
|
8 |
|
nsgmgc.p |
|
9 |
|
nsgmgc.e |
|
10 |
|
nsgmgc.f |
|
11 |
|
nsgmgc.n |
|
12 |
|
nfv |
|
13 |
|
vex |
|
14 |
13
|
mptex |
|
15 |
14
|
rnex |
|
16 |
15
|
a1i |
|
17 |
12 16 9
|
fnmptd |
|
18 |
|
mpteq1 |
|
19 |
18
|
rneqd |
|
20 |
19
|
cbvmptv |
|
21 |
9 20
|
eqtri |
|
22 |
|
eqid |
|
23 |
11
|
adantr |
|
24 |
|
simpr |
|
25 |
2
|
ssrab3 |
|
26 |
25
|
a1i |
|
27 |
1 7 8 21 22 23 24 26
|
qusima |
|
28 |
1 7 22
|
qusghm |
|
29 |
23 28
|
syl |
|
30 |
25
|
a1i |
|
31 |
30
|
sselda |
|
32 |
|
ghmima |
|
33 |
29 31 32
|
syl2anc |
|
34 |
27 33
|
eqeltrd |
|
35 |
34 3
|
eleqtrrdi |
|
36 |
35
|
ralrimiva |
|
37 |
|
ffnfv |
|
38 |
17 36 37
|
sylanbrc |
|
39 |
|
sseq2 |
|
40 |
11
|
adantr |
|
41 |
|
simpr |
|
42 |
41 3
|
eleqtrdi |
|
43 |
1 7 8 40 42
|
nsgmgclem |
|
44 |
|
nsgsubg |
|
45 |
11 44
|
syl |
|
46 |
1
|
subgss |
|
47 |
45 46
|
syl |
|
48 |
47
|
adantr |
|
49 |
45
|
ad2antrr |
|
50 |
|
simpr |
|
51 |
8
|
grplsmid |
|
52 |
49 50 51
|
syl2anc |
|
53 |
11
|
ad2antrr |
|
54 |
42
|
adantr |
|
55 |
7
|
nsgqus0 |
|
56 |
53 54 55
|
syl2anc |
|
57 |
52 56
|
eqeltrd |
|
58 |
48 57
|
ssrabdv |
|
59 |
39 43 58
|
elrabd |
|
60 |
59 2
|
eleqtrrdi |
|
61 |
60 10
|
fmptd |
|
62 |
38 61
|
jca |
|
63 |
1
|
subgss |
|
64 |
31 63
|
syl |
|
65 |
64
|
ad2antrr |
|
66 |
9
|
fvmpt2 |
|
67 |
24 15 66
|
sylancl |
|
68 |
67
|
ad5ant12 |
|
69 |
|
simplr |
|
70 |
68 69
|
eqsstrrd |
|
71 |
|
eqid |
|
72 |
|
simpr |
|
73 |
|
sneq |
|
74 |
73
|
oveq1d |
|
75 |
74
|
eqeq2d |
|
76 |
75
|
adantl |
|
77 |
|
eqidd |
|
78 |
72 76 77
|
rspcedvd |
|
79 |
|
ovexd |
|
80 |
71 78 79
|
elrnmptd |
|
81 |
70 80
|
sseldd |
|
82 |
65 81
|
ssrabdv |
|
83 |
|
simpr |
|
84 |
1
|
fvexi |
|
85 |
84
|
rabex |
|
86 |
10
|
fvmpt2 |
|
87 |
83 85 86
|
sylancl |
|
88 |
87
|
adantr |
|
89 |
82 88
|
sseqtrrd |
|
90 |
67
|
ad2antrr |
|
91 |
|
simpr |
|
92 |
91
|
sselda |
|
93 |
87
|
ad2antrr |
|
94 |
92 93
|
eleqtrd |
|
95 |
|
sneq |
|
96 |
95
|
oveq1d |
|
97 |
96
|
eleq1d |
|
98 |
97
|
elrab |
|
99 |
98
|
simprbi |
|
100 |
94 99
|
syl |
|
101 |
100
|
ralrimiva |
|
102 |
71
|
rnmptss |
|
103 |
101 102
|
syl |
|
104 |
90 103
|
eqsstrd |
|
105 |
89 104
|
impbida |
|
106 |
3
|
fvexi |
|
107 |
|
eqid |
|
108 |
6 107
|
ipole |
|
109 |
106 35 83 108
|
mp3an2ani |
|
110 |
|
fvex |
|
111 |
2 110
|
rabex2 |
|
112 |
61
|
ffvelrnda |
|
113 |
112
|
adantlr |
|
114 |
|
eqid |
|
115 |
5 114
|
ipole |
|
116 |
111 24 113 115
|
mp3an2ani |
|
117 |
105 109 116
|
3bitr4d |
|
118 |
117
|
anasss |
|
119 |
118
|
ralrimivva |
|
120 |
5
|
ipobas |
|
121 |
111 120
|
ax-mp |
|
122 |
6
|
ipobas |
|
123 |
106 122
|
ax-mp |
|
124 |
5
|
ipopos |
|
125 |
|
posprs |
|
126 |
124 125
|
mp1i |
|
127 |
6
|
ipopos |
|
128 |
|
posprs |
|
129 |
127 128
|
mp1i |
|
130 |
121 123 114 107 4 126 129
|
mgcval |
|
131 |
62 119 130
|
mpbir2and |
|