| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nsgmgc.b |
|
| 2 |
|
nsgmgc.s |
|
| 3 |
|
nsgmgc.t |
|
| 4 |
|
nsgmgc.j |
|
| 5 |
|
nsgmgc.v |
|
| 6 |
|
nsgmgc.w |
|
| 7 |
|
nsgmgc.q |
|
| 8 |
|
nsgmgc.p |
|
| 9 |
|
nsgmgc.e |
|
| 10 |
|
nsgmgc.f |
|
| 11 |
|
nsgmgc.n |
|
| 12 |
|
nfv |
|
| 13 |
|
vex |
|
| 14 |
13
|
mptex |
|
| 15 |
14
|
rnex |
|
| 16 |
15
|
a1i |
|
| 17 |
12 16 9
|
fnmptd |
|
| 18 |
|
mpteq1 |
|
| 19 |
18
|
rneqd |
|
| 20 |
19
|
cbvmptv |
|
| 21 |
9 20
|
eqtri |
|
| 22 |
|
eqid |
|
| 23 |
11
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
2
|
ssrab3 |
|
| 26 |
25
|
a1i |
|
| 27 |
1 7 8 21 22 23 24 26
|
qusima |
|
| 28 |
1 7 22
|
qusghm |
|
| 29 |
23 28
|
syl |
|
| 30 |
25
|
a1i |
|
| 31 |
30
|
sselda |
|
| 32 |
|
ghmima |
|
| 33 |
29 31 32
|
syl2anc |
|
| 34 |
27 33
|
eqeltrd |
|
| 35 |
34 3
|
eleqtrrdi |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
|
ffnfv |
|
| 38 |
17 36 37
|
sylanbrc |
|
| 39 |
|
sseq2 |
|
| 40 |
11
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
41 3
|
eleqtrdi |
|
| 43 |
1 7 8 40 42
|
nsgmgclem |
|
| 44 |
|
nsgsubg |
|
| 45 |
11 44
|
syl |
|
| 46 |
1
|
subgss |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
45
|
ad2antrr |
|
| 50 |
|
simpr |
|
| 51 |
8
|
grplsmid |
|
| 52 |
49 50 51
|
syl2anc |
|
| 53 |
11
|
ad2antrr |
|
| 54 |
42
|
adantr |
|
| 55 |
7
|
nsgqus0 |
|
| 56 |
53 54 55
|
syl2anc |
|
| 57 |
52 56
|
eqeltrd |
|
| 58 |
48 57
|
ssrabdv |
|
| 59 |
39 43 58
|
elrabd |
|
| 60 |
59 2
|
eleqtrrdi |
|
| 61 |
60 10
|
fmptd |
|
| 62 |
38 61
|
jca |
|
| 63 |
1
|
subgss |
|
| 64 |
31 63
|
syl |
|
| 65 |
64
|
ad2antrr |
|
| 66 |
9
|
fvmpt2 |
|
| 67 |
24 15 66
|
sylancl |
|
| 68 |
67
|
ad5ant12 |
|
| 69 |
|
simplr |
|
| 70 |
68 69
|
eqsstrrd |
|
| 71 |
|
eqid |
|
| 72 |
|
simpr |
|
| 73 |
|
sneq |
|
| 74 |
73
|
oveq1d |
|
| 75 |
74
|
eqeq2d |
|
| 76 |
75
|
adantl |
|
| 77 |
|
eqidd |
|
| 78 |
72 76 77
|
rspcedvd |
|
| 79 |
|
ovexd |
|
| 80 |
71 78 79
|
elrnmptd |
|
| 81 |
70 80
|
sseldd |
|
| 82 |
65 81
|
ssrabdv |
|
| 83 |
|
simpr |
|
| 84 |
1
|
fvexi |
|
| 85 |
84
|
rabex |
|
| 86 |
10
|
fvmpt2 |
|
| 87 |
83 85 86
|
sylancl |
|
| 88 |
87
|
adantr |
|
| 89 |
82 88
|
sseqtrrd |
|
| 90 |
67
|
ad2antrr |
|
| 91 |
|
simpr |
|
| 92 |
91
|
sselda |
|
| 93 |
87
|
ad2antrr |
|
| 94 |
92 93
|
eleqtrd |
|
| 95 |
|
sneq |
|
| 96 |
95
|
oveq1d |
|
| 97 |
96
|
eleq1d |
|
| 98 |
97
|
elrab |
|
| 99 |
98
|
simprbi |
|
| 100 |
94 99
|
syl |
|
| 101 |
100
|
ralrimiva |
|
| 102 |
71
|
rnmptss |
|
| 103 |
101 102
|
syl |
|
| 104 |
90 103
|
eqsstrd |
|
| 105 |
89 104
|
impbida |
|
| 106 |
3
|
fvexi |
|
| 107 |
|
eqid |
|
| 108 |
6 107
|
ipole |
|
| 109 |
106 35 83 108
|
mp3an2ani |
|
| 110 |
|
fvex |
|
| 111 |
2 110
|
rabex2 |
|
| 112 |
61
|
ffvelcdmda |
|
| 113 |
112
|
adantlr |
|
| 114 |
|
eqid |
|
| 115 |
5 114
|
ipole |
|
| 116 |
111 24 113 115
|
mp3an2ani |
|
| 117 |
105 109 116
|
3bitr4d |
|
| 118 |
117
|
anasss |
|
| 119 |
118
|
ralrimivva |
|
| 120 |
5
|
ipobas |
|
| 121 |
111 120
|
ax-mp |
|
| 122 |
6
|
ipobas |
|
| 123 |
106 122
|
ax-mp |
|
| 124 |
5
|
ipopos |
|
| 125 |
|
posprs |
|
| 126 |
124 125
|
mp1i |
|
| 127 |
6
|
ipopos |
|
| 128 |
|
posprs |
|
| 129 |
127 128
|
mp1i |
|
| 130 |
121 123 114 107 4 126 129
|
mgcval |
|
| 131 |
62 119 130
|
mpbir2and |
|