| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusrn.b |
|- B = ( Base ` G ) |
| 2 |
|
qusrn.e |
|- U = ( B /. ( G ~QG N ) ) |
| 3 |
|
qusrn.f |
|- F = ( x e. B |-> [ x ] ( G ~QG N ) ) |
| 4 |
|
qusrn.n |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
| 5 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
| 6 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> N e. ( SubGrp ` G ) ) |
| 9 |
1 5 8
|
qusbas2 |
|- ( ph -> ( B /. ( G ~QG N ) ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 10 |
2 9
|
eqtrid |
|- ( ph -> U = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 11 |
|
ovex |
|- ( G ~QG N ) e. _V |
| 12 |
|
ecexg |
|- ( ( G ~QG N ) e. _V -> [ x ] ( G ~QG N ) e. _V ) |
| 13 |
11 12
|
mp1i |
|- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG N ) e. _V ) |
| 14 |
3 13
|
dmmptd |
|- ( ph -> dom F = B ) |
| 15 |
14
|
imaeq2d |
|- ( ph -> ( F " dom F ) = ( F " B ) ) |
| 16 |
|
eqid |
|- ( G /s ( G ~QG N ) ) = ( G /s ( G ~QG N ) ) |
| 17 |
|
eqid |
|- ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) = ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 18 |
|
subgrcl |
|- ( N e. ( SubGrp ` G ) -> G e. Grp ) |
| 19 |
1
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 20 |
4 6 18 19
|
4syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
| 21 |
|
ssidd |
|- ( ph -> ( SubGrp ` G ) C_ ( SubGrp ` G ) ) |
| 22 |
1 16 5 17 3 4 20 21
|
qusima |
|- ( ph -> ( ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) ` B ) = ( F " B ) ) |
| 23 |
|
mpteq1 |
|- ( h = B -> ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) = ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 24 |
23
|
rneqd |
|- ( h = B -> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 25 |
20
|
mptexd |
|- ( ph -> ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) e. _V ) |
| 26 |
25
|
rnexd |
|- ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) e. _V ) |
| 27 |
17 24 20 26
|
fvmptd3 |
|- ( ph -> ( ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) ` B ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) ) |
| 28 |
15 22 27
|
3eqtr2rd |
|- ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) = ( F " dom F ) ) |
| 29 |
|
imadmrn |
|- ( F " dom F ) = ran F |
| 30 |
28 29
|
eqtrdi |
|- ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) = ran F ) |
| 31 |
10 30
|
eqtr2d |
|- ( ph -> ran F = U ) |