| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusrn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
qusrn.e |
⊢ 𝑈 = ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) |
| 3 |
|
qusrn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 4 |
|
qusrn.n |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 5 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 6 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
1 5 8
|
qusbas2 |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝑁 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 10 |
2 9
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 11 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑁 ) ∈ V |
| 12 |
|
ecexg |
⊢ ( ( 𝐺 ~QG 𝑁 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ V ) |
| 13 |
11 12
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ∈ V ) |
| 14 |
3 13
|
dmmptd |
⊢ ( 𝜑 → dom 𝐹 = 𝐵 ) |
| 15 |
14
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝐵 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 17 |
|
eqid |
⊢ ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) = ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 18 |
|
subgrcl |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 19 |
1
|
subgid |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 |
4 6 18 19
|
4syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 |
|
ssidd |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 22 |
1 16 5 17 3 4 20 21
|
qusima |
⊢ ( 𝜑 → ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) ‘ 𝐵 ) = ( 𝐹 “ 𝐵 ) ) |
| 23 |
|
mpteq1 |
⊢ ( ℎ = 𝐵 → ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 24 |
23
|
rneqd |
⊢ ( ℎ = 𝐵 → ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 25 |
20
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ∈ V ) |
| 26 |
25
|
rnexd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ∈ V ) |
| 27 |
17 24 20 26
|
fvmptd3 |
⊢ ( 𝜑 → ( ( ℎ ∈ ( SubGrp ‘ 𝐺 ) ↦ ran ( 𝑥 ∈ ℎ ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) ‘ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) ) |
| 28 |
15 22 27
|
3eqtr2rd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) = ( 𝐹 “ dom 𝐹 ) ) |
| 29 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
| 30 |
28 29
|
eqtrdi |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐵 ↦ ( { 𝑥 } ( LSSum ‘ 𝐺 ) 𝑁 ) ) = ran 𝐹 ) |
| 31 |
10 30
|
eqtr2d |
⊢ ( 𝜑 → ran 𝐹 = 𝑈 ) |