| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
| 2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
| 3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
| 4 |
|
qsdrng.2 |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
| 5 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 6 |
3 5
|
syl |
|- ( ph -> R e. Ring ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> R e. Ring ) |
| 8 |
4
|
2idllidld |
|- ( ph -> M e. ( LIdeal ` R ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` R ) ) |
| 10 |
|
drngnzr |
|- ( Q e. DivRing -> Q e. NzRing ) |
| 11 |
10
|
ad2antlr |
|- ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> Q e. NzRing ) |
| 12 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 13 |
2 12
|
qusring |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
| 14 |
6 4 13
|
syl2anc |
|- ( ph -> Q e. Ring ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ M = ( Base ` R ) ) -> Q e. Ring ) |
| 16 |
|
oveq2 |
|- ( M = ( Base ` R ) -> ( R ~QG M ) = ( R ~QG ( Base ` R ) ) ) |
| 17 |
16
|
oveq2d |
|- ( M = ( Base ` R ) -> ( R /s ( R ~QG M ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
| 18 |
2 17
|
eqtrid |
|- ( M = ( Base ` R ) -> Q = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
| 19 |
18
|
fveq2d |
|- ( M = ( Base ` R ) -> ( Base ` Q ) = ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) ) |
| 20 |
6
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 21 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 22 |
|
eqid |
|- ( R /s ( R ~QG ( Base ` R ) ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) |
| 23 |
21 22
|
qustriv |
|- ( R e. Grp -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
| 24 |
20 23
|
syl |
|- ( ph -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
| 25 |
19 24
|
sylan9eqr |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( Base ` Q ) = { ( Base ` R ) } ) |
| 26 |
25
|
fveq2d |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = ( # ` { ( Base ` R ) } ) ) |
| 27 |
|
fvex |
|- ( Base ` R ) e. _V |
| 28 |
|
hashsng |
|- ( ( Base ` R ) e. _V -> ( # ` { ( Base ` R ) } ) = 1 ) |
| 29 |
27 28
|
ax-mp |
|- ( # ` { ( Base ` R ) } ) = 1 |
| 30 |
26 29
|
eqtrdi |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = 1 ) |
| 31 |
|
0ringnnzr |
|- ( Q e. Ring -> ( ( # ` ( Base ` Q ) ) = 1 <-> -. Q e. NzRing ) ) |
| 32 |
31
|
biimpa |
|- ( ( Q e. Ring /\ ( # ` ( Base ` Q ) ) = 1 ) -> -. Q e. NzRing ) |
| 33 |
15 30 32
|
syl2anc |
|- ( ( ph /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) |
| 34 |
33
|
adantlr |
|- ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) |
| 35 |
11 34
|
pm2.65da |
|- ( ( ph /\ Q e. DivRing ) -> -. M = ( Base ` R ) ) |
| 36 |
35
|
neqned |
|- ( ( ph /\ Q e. DivRing ) -> M =/= ( Base ` R ) ) |
| 37 |
|
simplr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) |
| 38 |
|
simpr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) |
| 39 |
38
|
neqned |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) |
| 40 |
39
|
necomd |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) |
| 41 |
|
pssdifn0 |
|- ( ( M C_ j /\ M =/= j ) -> ( j \ M ) =/= (/) ) |
| 42 |
37 40 41
|
syl2anc |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) |
| 43 |
|
n0 |
|- ( ( j \ M ) =/= (/) <-> E. x x e. ( j \ M ) ) |
| 44 |
42 43
|
sylib |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) |
| 45 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> R e. NzRing ) |
| 46 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` R ) ) |
| 47 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> Q e. DivRing ) |
| 48 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` R ) ) |
| 49 |
37
|
adantr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) |
| 50 |
|
simpr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) |
| 51 |
1 2 45 46 21 47 48 49 50
|
qsdrnglem2 |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) |
| 52 |
44 51
|
exlimddv |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) |
| 53 |
52
|
ex |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) |
| 54 |
53
|
orrd |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) |
| 55 |
54
|
ex |
|- ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 56 |
55
|
ralrimiva |
|- ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 57 |
21
|
ismxidl |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) |
| 58 |
57
|
biimpar |
|- ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) |
| 59 |
7 9 36 56 58
|
syl13anc |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` R ) ) |
| 60 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
| 61 |
6 60
|
syl |
|- ( ph -> O e. Ring ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> O e. Ring ) |
| 63 |
4
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( 2Ideal ` R ) ) |
| 64 |
63 1
|
2idlridld |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` O ) ) |
| 65 |
|
simplr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) |
| 66 |
|
simpr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) |
| 67 |
66
|
neqned |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) |
| 68 |
67
|
necomd |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) |
| 69 |
65 68 41
|
syl2anc |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) |
| 70 |
69 43
|
sylib |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) |
| 71 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 72 |
|
eqid |
|- ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) |
| 73 |
1
|
opprnzr |
|- ( R e. NzRing -> O e. NzRing ) |
| 74 |
3 73
|
syl |
|- ( ph -> O e. NzRing ) |
| 75 |
74
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> O e. NzRing ) |
| 76 |
1 6
|
oppr2idl |
|- ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) |
| 77 |
4 76
|
eleqtrd |
|- ( ph -> M e. ( 2Ideal ` O ) ) |
| 78 |
77
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` O ) ) |
| 79 |
1 21
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 80 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
| 81 |
80
|
opprdrng |
|- ( Q e. DivRing <-> ( oppR ` Q ) e. DivRing ) |
| 82 |
21 1 2 6 4
|
opprqusdrng |
|- ( ph -> ( ( oppR ` Q ) e. DivRing <-> ( O /s ( O ~QG M ) ) e. DivRing ) ) |
| 83 |
82
|
biimpa |
|- ( ( ph /\ ( oppR ` Q ) e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
| 84 |
81 83
|
sylan2b |
|- ( ( ph /\ Q e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
| 85 |
84
|
ad4antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
| 86 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` O ) ) |
| 87 |
65
|
adantr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) |
| 88 |
|
simpr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) |
| 89 |
71 72 75 78 79 85 86 87 88
|
qsdrnglem2 |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) |
| 90 |
70 89
|
exlimddv |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) |
| 91 |
90
|
ex |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) |
| 92 |
91
|
orrd |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) |
| 93 |
92
|
ex |
|- ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 94 |
93
|
ralrimiva |
|- ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
| 95 |
79
|
ismxidl |
|- ( O e. Ring -> ( M e. ( MaxIdeal ` O ) <-> ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) |
| 96 |
95
|
biimpar |
|- ( ( O e. Ring /\ ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` O ) ) |
| 97 |
62 64 36 94 96
|
syl13anc |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` O ) ) |
| 98 |
59 97
|
jca |
|- ( ( ph /\ Q e. DivRing ) -> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) |
| 99 |
3
|
adantr |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> R e. NzRing ) |
| 100 |
|
simprl |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` R ) ) |
| 101 |
|
simprr |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` O ) ) |
| 102 |
1 2 99 100 101
|
qsdrngi |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> Q e. DivRing ) |
| 103 |
98 102
|
impbida |
|- ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) |