| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsdrng.0 |  |-  O = ( oppR ` R ) | 
						
							| 2 |  | qsdrng.q |  |-  Q = ( R /s ( R ~QG M ) ) | 
						
							| 3 |  | qsdrng.r |  |-  ( ph -> R e. NzRing ) | 
						
							| 4 |  | qsdrng.2 |  |-  ( ph -> M e. ( 2Ideal ` R ) ) | 
						
							| 5 |  | nzrring |  |-  ( R e. NzRing -> R e. Ring ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ Q e. DivRing ) -> R e. Ring ) | 
						
							| 8 | 4 | 2idllidld |  |-  ( ph -> M e. ( LIdeal ` R ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` R ) ) | 
						
							| 10 |  | drngnzr |  |-  ( Q e. DivRing -> Q e. NzRing ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> Q e. NzRing ) | 
						
							| 12 |  | eqid |  |-  ( 2Ideal ` R ) = ( 2Ideal ` R ) | 
						
							| 13 | 2 12 | qusring |  |-  ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> Q e. Ring ) | 
						
							| 14 | 6 4 13 | syl2anc |  |-  ( ph -> Q e. Ring ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ M = ( Base ` R ) ) -> Q e. Ring ) | 
						
							| 16 |  | oveq2 |  |-  ( M = ( Base ` R ) -> ( R ~QG M ) = ( R ~QG ( Base ` R ) ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( M = ( Base ` R ) -> ( R /s ( R ~QG M ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) ) | 
						
							| 18 | 2 17 | eqtrid |  |-  ( M = ( Base ` R ) -> Q = ( R /s ( R ~QG ( Base ` R ) ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( M = ( Base ` R ) -> ( Base ` Q ) = ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) ) | 
						
							| 20 | 6 | ringgrpd |  |-  ( ph -> R e. Grp ) | 
						
							| 21 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 22 |  | eqid |  |-  ( R /s ( R ~QG ( Base ` R ) ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) | 
						
							| 23 | 21 22 | qustriv |  |-  ( R e. Grp -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) | 
						
							| 24 | 20 23 | syl |  |-  ( ph -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) | 
						
							| 25 | 19 24 | sylan9eqr |  |-  ( ( ph /\ M = ( Base ` R ) ) -> ( Base ` Q ) = { ( Base ` R ) } ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = ( # ` { ( Base ` R ) } ) ) | 
						
							| 27 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 28 |  | hashsng |  |-  ( ( Base ` R ) e. _V -> ( # ` { ( Base ` R ) } ) = 1 ) | 
						
							| 29 | 27 28 | ax-mp |  |-  ( # ` { ( Base ` R ) } ) = 1 | 
						
							| 30 | 26 29 | eqtrdi |  |-  ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = 1 ) | 
						
							| 31 |  | 0ringnnzr |  |-  ( Q e. Ring -> ( ( # ` ( Base ` Q ) ) = 1 <-> -. Q e. NzRing ) ) | 
						
							| 32 | 31 | biimpa |  |-  ( ( Q e. Ring /\ ( # ` ( Base ` Q ) ) = 1 ) -> -. Q e. NzRing ) | 
						
							| 33 | 15 30 32 | syl2anc |  |-  ( ( ph /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) | 
						
							| 35 | 11 34 | pm2.65da |  |-  ( ( ph /\ Q e. DivRing ) -> -. M = ( Base ` R ) ) | 
						
							| 36 | 35 | neqned |  |-  ( ( ph /\ Q e. DivRing ) -> M =/= ( Base ` R ) ) | 
						
							| 37 |  | simplr |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) | 
						
							| 39 | 38 | neqned |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) | 
						
							| 40 | 39 | necomd |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) | 
						
							| 41 |  | pssdifn0 |  |-  ( ( M C_ j /\ M =/= j ) -> ( j \ M ) =/= (/) ) | 
						
							| 42 | 37 40 41 | syl2anc |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) | 
						
							| 43 |  | n0 |  |-  ( ( j \ M ) =/= (/) <-> E. x x e. ( j \ M ) ) | 
						
							| 44 | 42 43 | sylib |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) | 
						
							| 45 | 3 | ad5antr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> R e. NzRing ) | 
						
							| 46 | 4 | ad5antr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` R ) ) | 
						
							| 47 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> Q e. DivRing ) | 
						
							| 48 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` R ) ) | 
						
							| 49 | 37 | adantr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) | 
						
							| 50 |  | simpr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) | 
						
							| 51 | 1 2 45 46 21 47 48 49 50 | qsdrnglem2 |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) | 
						
							| 52 | 44 51 | exlimddv |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) | 
						
							| 54 | 53 | orrd |  |-  ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 56 | 55 | ralrimiva |  |-  ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 57 | 21 | ismxidl |  |-  ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) | 
						
							| 58 | 57 | biimpar |  |-  ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 59 | 7 9 36 56 58 | syl13anc |  |-  ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 60 | 1 | opprring |  |-  ( R e. Ring -> O e. Ring ) | 
						
							| 61 | 6 60 | syl |  |-  ( ph -> O e. Ring ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ Q e. DivRing ) -> O e. Ring ) | 
						
							| 63 | 4 | adantr |  |-  ( ( ph /\ Q e. DivRing ) -> M e. ( 2Ideal ` R ) ) | 
						
							| 64 | 63 1 | 2idlridld |  |-  ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` O ) ) | 
						
							| 65 |  | simplr |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) | 
						
							| 66 |  | simpr |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) | 
						
							| 67 | 66 | neqned |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) | 
						
							| 68 | 67 | necomd |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) | 
						
							| 69 | 65 68 41 | syl2anc |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) | 
						
							| 70 | 69 43 | sylib |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) | 
						
							| 71 |  | eqid |  |-  ( oppR ` O ) = ( oppR ` O ) | 
						
							| 72 |  | eqid |  |-  ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) | 
						
							| 73 | 1 | opprnzr |  |-  ( R e. NzRing -> O e. NzRing ) | 
						
							| 74 | 3 73 | syl |  |-  ( ph -> O e. NzRing ) | 
						
							| 75 | 74 | ad5antr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> O e. NzRing ) | 
						
							| 76 | 1 6 | oppr2idl |  |-  ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) | 
						
							| 77 | 4 76 | eleqtrd |  |-  ( ph -> M e. ( 2Ideal ` O ) ) | 
						
							| 78 | 77 | ad5antr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` O ) ) | 
						
							| 79 | 1 21 | opprbas |  |-  ( Base ` R ) = ( Base ` O ) | 
						
							| 80 |  | eqid |  |-  ( oppR ` Q ) = ( oppR ` Q ) | 
						
							| 81 | 80 | opprdrng |  |-  ( Q e. DivRing <-> ( oppR ` Q ) e. DivRing ) | 
						
							| 82 | 21 1 2 6 4 | opprqusdrng |  |-  ( ph -> ( ( oppR ` Q ) e. DivRing <-> ( O /s ( O ~QG M ) ) e. DivRing ) ) | 
						
							| 83 | 82 | biimpa |  |-  ( ( ph /\ ( oppR ` Q ) e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) | 
						
							| 84 | 81 83 | sylan2b |  |-  ( ( ph /\ Q e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) | 
						
							| 85 | 84 | ad4antr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> ( O /s ( O ~QG M ) ) e. DivRing ) | 
						
							| 86 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` O ) ) | 
						
							| 87 | 65 | adantr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) | 
						
							| 88 |  | simpr |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) | 
						
							| 89 | 71 72 75 78 79 85 86 87 88 | qsdrnglem2 |  |-  ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) | 
						
							| 90 | 70 89 | exlimddv |  |-  ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) | 
						
							| 91 | 90 | ex |  |-  ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) | 
						
							| 92 | 91 | orrd |  |-  ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) | 
						
							| 93 | 92 | ex |  |-  ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 94 | 93 | ralrimiva |  |-  ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) | 
						
							| 95 | 79 | ismxidl |  |-  ( O e. Ring -> ( M e. ( MaxIdeal ` O ) <-> ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) | 
						
							| 96 | 95 | biimpar |  |-  ( ( O e. Ring /\ ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` O ) ) | 
						
							| 97 | 62 64 36 94 96 | syl13anc |  |-  ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` O ) ) | 
						
							| 98 | 59 97 | jca |  |-  ( ( ph /\ Q e. DivRing ) -> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) | 
						
							| 99 | 3 | adantr |  |-  ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> R e. NzRing ) | 
						
							| 100 |  | simprl |  |-  ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` R ) ) | 
						
							| 101 |  | simprr |  |-  ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` O ) ) | 
						
							| 102 | 1 2 99 100 101 | qsdrngi |  |-  ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> Q e. DivRing ) | 
						
							| 103 | 98 102 | impbida |  |-  ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) |