Description: The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprnzr.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprnzr | |- ( R e. NzRing -> O e. NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprnzr.1 | |- O = ( oppR ` R ) |
|
| 2 | 1 | opprnzrb | |- ( R e. NzRing <-> O e. NzRing ) |
| 3 | 2 | biimpi | |- ( R e. NzRing -> O e. NzRing ) |