| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
|
| 2 |
|
qsdrng.q |
|
| 3 |
|
qsdrng.r |
|
| 4 |
|
qsdrng.2 |
|
| 5 |
|
nzrring |
|
| 6 |
3 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
4
|
2idllidld |
|
| 9 |
8
|
adantr |
|
| 10 |
|
drngnzr |
|
| 11 |
10
|
ad2antlr |
|
| 12 |
|
eqid |
|
| 13 |
2 12
|
qusring |
|
| 14 |
6 4 13
|
syl2anc |
|
| 15 |
14
|
adantr |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
2 17
|
eqtrid |
|
| 19 |
18
|
fveq2d |
|
| 20 |
6
|
ringgrpd |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
21 22
|
qustriv |
|
| 24 |
20 23
|
syl |
|
| 25 |
19 24
|
sylan9eqr |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
fvex |
|
| 28 |
|
hashsng |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
eqtrdi |
|
| 31 |
|
0ringnnzr |
|
| 32 |
31
|
biimpa |
|
| 33 |
15 30 32
|
syl2anc |
|
| 34 |
33
|
adantlr |
|
| 35 |
11 34
|
pm2.65da |
|
| 36 |
35
|
neqned |
|
| 37 |
|
simplr |
|
| 38 |
|
simpr |
|
| 39 |
38
|
neqned |
|
| 40 |
39
|
necomd |
|
| 41 |
|
pssdifn0 |
|
| 42 |
37 40 41
|
syl2anc |
|
| 43 |
|
n0 |
|
| 44 |
42 43
|
sylib |
|
| 45 |
3
|
ad5antr |
|
| 46 |
4
|
ad5antr |
|
| 47 |
|
simp-5r |
|
| 48 |
|
simp-4r |
|
| 49 |
37
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
1 2 45 46 21 47 48 49 50
|
qsdrnglem2 |
|
| 52 |
44 51
|
exlimddv |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
orrd |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
ralrimiva |
|
| 57 |
21
|
ismxidl |
|
| 58 |
57
|
biimpar |
|
| 59 |
7 9 36 56 58
|
syl13anc |
|
| 60 |
1
|
opprring |
|
| 61 |
6 60
|
syl |
|
| 62 |
61
|
adantr |
|
| 63 |
4
|
adantr |
|
| 64 |
63 1
|
2idlridld |
|
| 65 |
|
simplr |
|
| 66 |
|
simpr |
|
| 67 |
66
|
neqned |
|
| 68 |
67
|
necomd |
|
| 69 |
65 68 41
|
syl2anc |
|
| 70 |
69 43
|
sylib |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
1
|
opprnzr |
|
| 74 |
3 73
|
syl |
|
| 75 |
74
|
ad5antr |
|
| 76 |
1 6
|
oppr2idl |
|
| 77 |
4 76
|
eleqtrd |
|
| 78 |
77
|
ad5antr |
|
| 79 |
1 21
|
opprbas |
|
| 80 |
|
eqid |
|
| 81 |
80
|
opprdrng |
|
| 82 |
21 1 2 6 4
|
opprqusdrng |
|
| 83 |
82
|
biimpa |
|
| 84 |
81 83
|
sylan2b |
|
| 85 |
84
|
ad4antr |
|
| 86 |
|
simp-4r |
|
| 87 |
65
|
adantr |
|
| 88 |
|
simpr |
|
| 89 |
71 72 75 78 79 85 86 87 88
|
qsdrnglem2 |
|
| 90 |
70 89
|
exlimddv |
|
| 91 |
90
|
ex |
|
| 92 |
91
|
orrd |
|
| 93 |
92
|
ex |
|
| 94 |
93
|
ralrimiva |
|
| 95 |
79
|
ismxidl |
|
| 96 |
95
|
biimpar |
|
| 97 |
62 64 36 94 96
|
syl13anc |
|
| 98 |
59 97
|
jca |
|
| 99 |
3
|
adantr |
|
| 100 |
|
simprl |
|
| 101 |
|
simprr |
|
| 102 |
1 2 99 100 101
|
qsdrngi |
|
| 103 |
98 102
|
impbida |
|