Metamath Proof Explorer


Theorem qsdrng

Description: An ideal M is both left and right maximal if and only if the factor ring Q is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsdrng.0 O = opp r R
qsdrng.q Q = R / 𝑠 R ~ QG M
qsdrng.r φ R NzRing
qsdrng.2 φ M 2Ideal R
Assertion qsdrng φ Q DivRing M MaxIdeal R M MaxIdeal O

Proof

Step Hyp Ref Expression
1 qsdrng.0 O = opp r R
2 qsdrng.q Q = R / 𝑠 R ~ QG M
3 qsdrng.r φ R NzRing
4 qsdrng.2 φ M 2Ideal R
5 nzrring R NzRing R Ring
6 3 5 syl φ R Ring
7 6 adantr φ Q DivRing R Ring
8 4 2idllidld φ M LIdeal R
9 8 adantr φ Q DivRing M LIdeal R
10 drngnzr Q DivRing Q NzRing
11 10 ad2antlr φ Q DivRing M = Base R Q NzRing
12 eqid 2Ideal R = 2Ideal R
13 2 12 qusring R Ring M 2Ideal R Q Ring
14 6 4 13 syl2anc φ Q Ring
15 14 adantr φ M = Base R Q Ring
16 oveq2 M = Base R R ~ QG M = R ~ QG Base R
17 16 oveq2d M = Base R R / 𝑠 R ~ QG M = R / 𝑠 R ~ QG Base R
18 2 17 eqtrid M = Base R Q = R / 𝑠 R ~ QG Base R
19 18 fveq2d M = Base R Base Q = Base R / 𝑠 R ~ QG Base R
20 6 ringgrpd φ R Grp
21 eqid Base R = Base R
22 eqid R / 𝑠 R ~ QG Base R = R / 𝑠 R ~ QG Base R
23 21 22 qustriv R Grp Base R / 𝑠 R ~ QG Base R = Base R
24 20 23 syl φ Base R / 𝑠 R ~ QG Base R = Base R
25 19 24 sylan9eqr φ M = Base R Base Q = Base R
26 25 fveq2d φ M = Base R Base Q = Base R
27 fvex Base R V
28 hashsng Base R V Base R = 1
29 27 28 ax-mp Base R = 1
30 26 29 eqtrdi φ M = Base R Base Q = 1
31 0ringnnzr Q Ring Base Q = 1 ¬ Q NzRing
32 31 biimpa Q Ring Base Q = 1 ¬ Q NzRing
33 15 30 32 syl2anc φ M = Base R ¬ Q NzRing
34 33 adantlr φ Q DivRing M = Base R ¬ Q NzRing
35 11 34 pm2.65da φ Q DivRing ¬ M = Base R
36 35 neqned φ Q DivRing M Base R
37 simplr φ Q DivRing j LIdeal R M j ¬ j = M M j
38 simpr φ Q DivRing j LIdeal R M j ¬ j = M ¬ j = M
39 38 neqned φ Q DivRing j LIdeal R M j ¬ j = M j M
40 39 necomd φ Q DivRing j LIdeal R M j ¬ j = M M j
41 pssdifn0 M j M j j M
42 37 40 41 syl2anc φ Q DivRing j LIdeal R M j ¬ j = M j M
43 n0 j M x x j M
44 42 43 sylib φ Q DivRing j LIdeal R M j ¬ j = M x x j M
45 3 ad5antr φ Q DivRing j LIdeal R M j ¬ j = M x j M R NzRing
46 4 ad5antr φ Q DivRing j LIdeal R M j ¬ j = M x j M M 2Ideal R
47 simp-5r φ Q DivRing j LIdeal R M j ¬ j = M x j M Q DivRing
48 simp-4r φ Q DivRing j LIdeal R M j ¬ j = M x j M j LIdeal R
49 37 adantr φ Q DivRing j LIdeal R M j ¬ j = M x j M M j
50 simpr φ Q DivRing j LIdeal R M j ¬ j = M x j M x j M
51 1 2 45 46 21 47 48 49 50 qsdrnglem2 φ Q DivRing j LIdeal R M j ¬ j = M x j M j = Base R
52 44 51 exlimddv φ Q DivRing j LIdeal R M j ¬ j = M j = Base R
53 52 ex φ Q DivRing j LIdeal R M j ¬ j = M j = Base R
54 53 orrd φ Q DivRing j LIdeal R M j j = M j = Base R
55 54 ex φ Q DivRing j LIdeal R M j j = M j = Base R
56 55 ralrimiva φ Q DivRing j LIdeal R M j j = M j = Base R
57 21 ismxidl R Ring M MaxIdeal R M LIdeal R M Base R j LIdeal R M j j = M j = Base R
58 57 biimpar R Ring M LIdeal R M Base R j LIdeal R M j j = M j = Base R M MaxIdeal R
59 7 9 36 56 58 syl13anc φ Q DivRing M MaxIdeal R
60 1 opprring R Ring O Ring
61 6 60 syl φ O Ring
62 61 adantr φ Q DivRing O Ring
63 4 adantr φ Q DivRing M 2Ideal R
64 63 1 2idlridld φ Q DivRing M LIdeal O
65 simplr φ Q DivRing j LIdeal O M j ¬ j = M M j
66 simpr φ Q DivRing j LIdeal O M j ¬ j = M ¬ j = M
67 66 neqned φ Q DivRing j LIdeal O M j ¬ j = M j M
68 67 necomd φ Q DivRing j LIdeal O M j ¬ j = M M j
69 65 68 41 syl2anc φ Q DivRing j LIdeal O M j ¬ j = M j M
70 69 43 sylib φ Q DivRing j LIdeal O M j ¬ j = M x x j M
71 eqid opp r O = opp r O
72 eqid O / 𝑠 O ~ QG M = O / 𝑠 O ~ QG M
73 1 opprnzr R NzRing O NzRing
74 3 73 syl φ O NzRing
75 74 ad5antr φ Q DivRing j LIdeal O M j ¬ j = M x j M O NzRing
76 1 6 oppr2idl φ 2Ideal R = 2Ideal O
77 4 76 eleqtrd φ M 2Ideal O
78 77 ad5antr φ Q DivRing j LIdeal O M j ¬ j = M x j M M 2Ideal O
79 1 21 opprbas Base R = Base O
80 eqid opp r Q = opp r Q
81 80 opprdrng Q DivRing opp r Q DivRing
82 21 1 2 6 4 opprqusdrng φ opp r Q DivRing O / 𝑠 O ~ QG M DivRing
83 82 biimpa φ opp r Q DivRing O / 𝑠 O ~ QG M DivRing
84 81 83 sylan2b φ Q DivRing O / 𝑠 O ~ QG M DivRing
85 84 ad4antr φ Q DivRing j LIdeal O M j ¬ j = M x j M O / 𝑠 O ~ QG M DivRing
86 simp-4r φ Q DivRing j LIdeal O M j ¬ j = M x j M j LIdeal O
87 65 adantr φ Q DivRing j LIdeal O M j ¬ j = M x j M M j
88 simpr φ Q DivRing j LIdeal O M j ¬ j = M x j M x j M
89 71 72 75 78 79 85 86 87 88 qsdrnglem2 φ Q DivRing j LIdeal O M j ¬ j = M x j M j = Base R
90 70 89 exlimddv φ Q DivRing j LIdeal O M j ¬ j = M j = Base R
91 90 ex φ Q DivRing j LIdeal O M j ¬ j = M j = Base R
92 91 orrd φ Q DivRing j LIdeal O M j j = M j = Base R
93 92 ex φ Q DivRing j LIdeal O M j j = M j = Base R
94 93 ralrimiva φ Q DivRing j LIdeal O M j j = M j = Base R
95 79 ismxidl O Ring M MaxIdeal O M LIdeal O M Base R j LIdeal O M j j = M j = Base R
96 95 biimpar O Ring M LIdeal O M Base R j LIdeal O M j j = M j = Base R M MaxIdeal O
97 62 64 36 94 96 syl13anc φ Q DivRing M MaxIdeal O
98 59 97 jca φ Q DivRing M MaxIdeal R M MaxIdeal O
99 3 adantr φ M MaxIdeal R M MaxIdeal O R NzRing
100 simprl φ M MaxIdeal R M MaxIdeal O M MaxIdeal R
101 simprr φ M MaxIdeal R M MaxIdeal O M MaxIdeal O
102 1 2 99 100 101 qsdrngi φ M MaxIdeal R M MaxIdeal O Q DivRing
103 98 102 impbida φ Q DivRing M MaxIdeal R M MaxIdeal O