Metamath Proof Explorer


Theorem qsfld

Description: An ideal M in the commutative ring R is maximal if and only if the factor ring Q is a field. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsfld.1 Q = R / 𝑠 R ~ QG M
qsfld.2 φ R CRing
qsfld.3 φ R NzRing
qsfld.4 φ M LIdeal R
Assertion qsfld φ Q Field M MaxIdeal R

Proof

Step Hyp Ref Expression
1 qsfld.1 Q = R / 𝑠 R ~ QG M
2 qsfld.2 φ R CRing
3 qsfld.3 φ R NzRing
4 qsfld.4 φ M LIdeal R
5 eqid opp r R = opp r R
6 eqid LIdeal R = LIdeal R
7 6 crng2idl R CRing LIdeal R = 2Ideal R
8 2 7 syl φ LIdeal R = 2Ideal R
9 4 8 eleqtrd φ M 2Ideal R
10 5 1 3 9 qsdrng φ Q DivRing M MaxIdeal R M MaxIdeal opp r R
11 isfld Q Field Q DivRing Q CRing
12 1 6 quscrng R CRing M LIdeal R Q CRing
13 2 4 12 syl2anc φ Q CRing
14 13 biantrud φ Q DivRing Q DivRing Q CRing
15 11 14 bitr4id φ Q Field Q DivRing
16 eqid MaxIdeal R = MaxIdeal R
17 16 5 crngmxidl R CRing MaxIdeal R = MaxIdeal opp r R
18 2 17 syl φ MaxIdeal R = MaxIdeal opp r R
19 18 eleq2d φ M MaxIdeal R M MaxIdeal opp r R
20 19 biimpd φ M MaxIdeal R M MaxIdeal opp r R
21 20 pm4.71d φ M MaxIdeal R M MaxIdeal R M MaxIdeal opp r R
22 10 15 21 3bitr4d φ Q Field M MaxIdeal R