Metamath Proof Explorer


Theorem mxidlprmALT

Description: Every maximal ideal is prime - alternative proof. (Contributed by Thierry Arnoux, 15-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mxidlprmALT.1 φ R CRing
mxidlprmALT.2 φ M MaxIdeal R
Assertion mxidlprmALT φ M PrmIdeal R

Proof

Step Hyp Ref Expression
1 mxidlprmALT.1 φ R CRing
2 mxidlprmALT.2 φ M MaxIdeal R
3 eqid R / 𝑠 R ~ QG M = R / 𝑠 R ~ QG M
4 1 crngringd φ R Ring
5 eqid Base R = Base R
6 5 mxidlnzr R Ring M MaxIdeal R R NzRing
7 4 2 6 syl2anc φ R NzRing
8 5 mxidlidl R Ring M MaxIdeal R M LIdeal R
9 4 2 8 syl2anc φ M LIdeal R
10 3 1 7 9 qsfld φ R / 𝑠 R ~ QG M Field M MaxIdeal R
11 2 10 mpbird φ R / 𝑠 R ~ QG M Field
12 fldidom R / 𝑠 R ~ QG M Field R / 𝑠 R ~ QG M IDomn
13 11 12 syl φ R / 𝑠 R ~ QG M IDomn
14 3 qsidom R CRing M LIdeal R R / 𝑠 R ~ QG M IDomn M PrmIdeal R
15 1 9 14 syl2anc φ R / 𝑠 R ~ QG M IDomn M PrmIdeal R
16 13 15 mpbid φ M PrmIdeal R