| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mxidlprmALT.1 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 2 |  | mxidlprmALT.2 | ⊢ ( 𝜑  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 4 | 1 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 5 | mxidlnzr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑅  ∈  NzRing ) | 
						
							| 7 | 4 2 6 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  NzRing ) | 
						
							| 8 | 5 | mxidlidl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) )  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 9 | 4 2 8 | syl2anc | ⊢ ( 𝜑  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 | 3 1 7 9 | qsfld | ⊢ ( 𝜑  →  ( ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  Field  ↔  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) ) | 
						
							| 11 | 2 10 | mpbird | ⊢ ( 𝜑  →  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  Field ) | 
						
							| 12 |  | fldidom | ⊢ ( ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  Field  →  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  IDomn ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  IDomn ) | 
						
							| 14 | 3 | qsidom | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  IDomn  ↔  𝑀  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 15 | 1 9 14 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  ∈  IDomn  ↔  𝑀  ∈  ( PrmIdeal ‘ 𝑅 ) ) ) | 
						
							| 16 | 13 15 | mpbid | ⊢ ( 𝜑  →  𝑀  ∈  ( PrmIdeal ‘ 𝑅 ) ) |