| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlprmALT.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 2 |
|
mxidlprmALT.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 3 |
|
eqid |
⊢ ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
| 4 |
1
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
5
|
mxidlnzr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 7 |
4 2 6
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 8 |
5
|
mxidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 9 |
4 2 8
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 10 |
3 1 7 9
|
qsfld |
⊢ ( 𝜑 → ( ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ Field ↔ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ) |
| 11 |
2 10
|
mpbird |
⊢ ( 𝜑 → ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ Field ) |
| 12 |
|
fldidom |
⊢ ( ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ Field → ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ IDomn ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ IDomn ) |
| 14 |
3
|
qsidom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ IDomn ↔ 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 15 |
1 9 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ∈ IDomn ↔ 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 16 |
13 15
|
mpbid |
⊢ ( 𝜑 → 𝑀 ∈ ( PrmIdeal ‘ 𝑅 ) ) |