| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mxidlprmALT.1 |  |-  ( ph -> R e. CRing ) | 
						
							| 2 |  | mxidlprmALT.2 |  |-  ( ph -> M e. ( MaxIdeal ` R ) ) | 
						
							| 3 |  | eqid |  |-  ( R /s ( R ~QG M ) ) = ( R /s ( R ~QG M ) ) | 
						
							| 4 | 1 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 | 5 | mxidlnzr |  |-  ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) | 
						
							| 7 | 4 2 6 | syl2anc |  |-  ( ph -> R e. NzRing ) | 
						
							| 8 | 5 | mxidlidl |  |-  ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) | 
						
							| 9 | 4 2 8 | syl2anc |  |-  ( ph -> M e. ( LIdeal ` R ) ) | 
						
							| 10 | 3 1 7 9 | qsfld |  |-  ( ph -> ( ( R /s ( R ~QG M ) ) e. Field <-> M e. ( MaxIdeal ` R ) ) ) | 
						
							| 11 | 2 10 | mpbird |  |-  ( ph -> ( R /s ( R ~QG M ) ) e. Field ) | 
						
							| 12 |  | fldidom |  |-  ( ( R /s ( R ~QG M ) ) e. Field -> ( R /s ( R ~QG M ) ) e. IDomn ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( R /s ( R ~QG M ) ) e. IDomn ) | 
						
							| 14 | 3 | qsidom |  |-  ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) | 
						
							| 15 | 1 9 14 | syl2anc |  |-  ( ph -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) | 
						
							| 16 | 13 15 | mpbid |  |-  ( ph -> M e. ( PrmIdeal ` R ) ) |