| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlprmALT.1 |
|- ( ph -> R e. CRing ) |
| 2 |
|
mxidlprmALT.2 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
| 3 |
|
eqid |
|- ( R /s ( R ~QG M ) ) = ( R /s ( R ~QG M ) ) |
| 4 |
1
|
crngringd |
|- ( ph -> R e. Ring ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5
|
mxidlnzr |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) |
| 7 |
4 2 6
|
syl2anc |
|- ( ph -> R e. NzRing ) |
| 8 |
5
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| 9 |
4 2 8
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` R ) ) |
| 10 |
3 1 7 9
|
qsfld |
|- ( ph -> ( ( R /s ( R ~QG M ) ) e. Field <-> M e. ( MaxIdeal ` R ) ) ) |
| 11 |
2 10
|
mpbird |
|- ( ph -> ( R /s ( R ~QG M ) ) e. Field ) |
| 12 |
|
fldidom |
|- ( ( R /s ( R ~QG M ) ) e. Field -> ( R /s ( R ~QG M ) ) e. IDomn ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( R /s ( R ~QG M ) ) e. IDomn ) |
| 14 |
3
|
qsidom |
|- ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) |
| 15 |
1 9 14
|
syl2anc |
|- ( ph -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) |
| 16 |
13 15
|
mpbid |
|- ( ph -> M e. ( PrmIdeal ` R ) ) |