| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsfld.1 |  |-  Q = ( R /s ( R ~QG M ) ) | 
						
							| 2 |  | qsfld.2 |  |-  ( ph -> R e. CRing ) | 
						
							| 3 |  | qsfld.3 |  |-  ( ph -> R e. NzRing ) | 
						
							| 4 |  | qsfld.4 |  |-  ( ph -> M e. ( LIdeal ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( oppR ` R ) = ( oppR ` R ) | 
						
							| 6 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 7 | 6 | crng2idl |  |-  ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) | 
						
							| 9 | 4 8 | eleqtrd |  |-  ( ph -> M e. ( 2Ideal ` R ) ) | 
						
							| 10 | 5 1 3 9 | qsdrng |  |-  ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) ) | 
						
							| 11 |  | isfld |  |-  ( Q e. Field <-> ( Q e. DivRing /\ Q e. CRing ) ) | 
						
							| 12 | 1 6 | quscrng |  |-  ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> Q e. CRing ) | 
						
							| 13 | 2 4 12 | syl2anc |  |-  ( ph -> Q e. CRing ) | 
						
							| 14 | 13 | biantrud |  |-  ( ph -> ( Q e. DivRing <-> ( Q e. DivRing /\ Q e. CRing ) ) ) | 
						
							| 15 | 11 14 | bitr4id |  |-  ( ph -> ( Q e. Field <-> Q e. DivRing ) ) | 
						
							| 16 |  | eqid |  |-  ( MaxIdeal ` R ) = ( MaxIdeal ` R ) | 
						
							| 17 | 16 5 | crngmxidl |  |-  ( R e. CRing -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) ) | 
						
							| 18 | 2 17 | syl |  |-  ( ph -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) ) | 
						
							| 19 | 18 | eleq2d |  |-  ( ph -> ( M e. ( MaxIdeal ` R ) <-> M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) | 
						
							| 20 | 19 | biimpd |  |-  ( ph -> ( M e. ( MaxIdeal ` R ) -> M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) | 
						
							| 21 | 20 | pm4.71d |  |-  ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) ) | 
						
							| 22 | 10 15 21 | 3bitr4d |  |-  ( ph -> ( Q e. Field <-> M e. ( MaxIdeal ` R ) ) ) |