| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsdrng.0 | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 2 |  | qsdrng.q | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) ) | 
						
							| 3 |  | qsdrng.r | ⊢ ( 𝜑  →  𝑅  ∈  NzRing ) | 
						
							| 4 |  | qsdrng.2 | ⊢ ( 𝜑  →  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 5 |  | nzrring | ⊢ ( 𝑅  ∈  NzRing  →  𝑅  ∈  Ring ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑅  ∈  Ring ) | 
						
							| 8 | 4 | 2idllidld | ⊢ ( 𝜑  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 10 |  | drngnzr | ⊢ ( 𝑄  ∈  DivRing  →  𝑄  ∈  NzRing ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  𝑄  ∈  NzRing ) | 
						
							| 12 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 13 | 2 12 | qusring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) )  →  𝑄  ∈  Ring ) | 
						
							| 14 | 6 4 13 | syl2anc | ⊢ ( 𝜑  →  𝑄  ∈  Ring ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  𝑄  ∈  Ring ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑀  =  ( Base ‘ 𝑅 )  →  ( 𝑅  ~QG  𝑀 )  =  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑀  =  ( Base ‘ 𝑅 )  →  ( 𝑅  /s  ( 𝑅  ~QG  𝑀 ) )  =  ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 18 | 2 17 | eqtrid | ⊢ ( 𝑀  =  ( Base ‘ 𝑅 )  →  𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑀  =  ( Base ‘ 𝑅 )  →  ( Base ‘ 𝑄 )  =  ( Base ‘ ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 20 | 6 | ringgrpd | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) )  =  ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) | 
						
							| 23 | 21 22 | qustriv | ⊢ ( 𝑅  ∈  Grp  →  ( Base ‘ ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) )  =  { ( Base ‘ 𝑅 ) } ) | 
						
							| 24 | 20 23 | syl | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑅  /s  ( 𝑅  ~QG  ( Base ‘ 𝑅 ) ) ) )  =  { ( Base ‘ 𝑅 ) } ) | 
						
							| 25 | 19 24 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  ( Base ‘ 𝑄 )  =  { ( Base ‘ 𝑅 ) } ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  ( ♯ ‘ ( Base ‘ 𝑄 ) )  =  ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) ) | 
						
							| 27 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 28 |  | hashsng | ⊢ ( ( Base ‘ 𝑅 )  ∈  V  →  ( ♯ ‘ { ( Base ‘ 𝑅 ) } )  =  1 ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ♯ ‘ { ( Base ‘ 𝑅 ) } )  =  1 | 
						
							| 30 | 26 29 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  ( ♯ ‘ ( Base ‘ 𝑄 ) )  =  1 ) | 
						
							| 31 |  | 0ringnnzr | ⊢ ( 𝑄  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ 𝑄 ) )  =  1  ↔  ¬  𝑄  ∈  NzRing ) ) | 
						
							| 32 | 31 | biimpa | ⊢ ( ( 𝑄  ∈  Ring  ∧  ( ♯ ‘ ( Base ‘ 𝑄 ) )  =  1 )  →  ¬  𝑄  ∈  NzRing ) | 
						
							| 33 | 15 30 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  ¬  𝑄  ∈  NzRing ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑀  =  ( Base ‘ 𝑅 ) )  →  ¬  𝑄  ∈  NzRing ) | 
						
							| 35 | 11 34 | pm2.65da | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  ¬  𝑀  =  ( Base ‘ 𝑅 ) ) | 
						
							| 36 | 35 | neqned | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ≠  ( Base ‘ 𝑅 ) ) | 
						
							| 37 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑀  ⊆  𝑗 ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ¬  𝑗  =  𝑀 ) | 
						
							| 39 | 38 | neqned | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑗  ≠  𝑀 ) | 
						
							| 40 | 39 | necomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑀  ≠  𝑗 ) | 
						
							| 41 |  | pssdifn0 | ⊢ ( ( 𝑀  ⊆  𝑗  ∧  𝑀  ≠  𝑗 )  →  ( 𝑗  ∖  𝑀 )  ≠  ∅ ) | 
						
							| 42 | 37 40 41 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ( 𝑗  ∖  𝑀 )  ≠  ∅ ) | 
						
							| 43 |  | n0 | ⊢ ( ( 𝑗  ∖  𝑀 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝑗  ∖  𝑀 ) ) | 
						
							| 44 | 42 43 | sylib | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ∃ 𝑥 𝑥  ∈  ( 𝑗  ∖  𝑀 ) ) | 
						
							| 45 | 3 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑅  ∈  NzRing ) | 
						
							| 46 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 47 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑄  ∈  DivRing ) | 
						
							| 48 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 49 | 37 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑀  ⊆  𝑗 ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑥  ∈  ( 𝑗  ∖  𝑀 ) ) | 
						
							| 51 | 1 2 45 46 21 47 48 49 50 | qsdrnglem2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 52 | 44 51 | exlimddv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( ¬  𝑗  =  𝑀  →  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 54 | 53 | orrd | ⊢ ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 57 | 21 | ismxidl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ↔  ( 𝑀  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 58 | 57 | biimpar | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑀  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 59 | 7 9 36 56 58 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 60 | 1 | opprring | ⊢ ( 𝑅  ∈  Ring  →  𝑂  ∈  Ring ) | 
						
							| 61 | 6 60 | syl | ⊢ ( 𝜑  →  𝑂  ∈  Ring ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑂  ∈  Ring ) | 
						
							| 63 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 64 | 63 1 | 2idlridld | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ∈  ( LIdeal ‘ 𝑂 ) ) | 
						
							| 65 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑀  ⊆  𝑗 ) | 
						
							| 66 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ¬  𝑗  =  𝑀 ) | 
						
							| 67 | 66 | neqned | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑗  ≠  𝑀 ) | 
						
							| 68 | 67 | necomd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑀  ≠  𝑗 ) | 
						
							| 69 | 65 68 41 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ( 𝑗  ∖  𝑀 )  ≠  ∅ ) | 
						
							| 70 | 69 43 | sylib | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  ∃ 𝑥 𝑥  ∈  ( 𝑗  ∖  𝑀 ) ) | 
						
							| 71 |  | eqid | ⊢ ( oppr ‘ 𝑂 )  =  ( oppr ‘ 𝑂 ) | 
						
							| 72 |  | eqid | ⊢ ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) )  =  ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) ) | 
						
							| 73 | 1 | opprnzr | ⊢ ( 𝑅  ∈  NzRing  →  𝑂  ∈  NzRing ) | 
						
							| 74 | 3 73 | syl | ⊢ ( 𝜑  →  𝑂  ∈  NzRing ) | 
						
							| 75 | 74 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑂  ∈  NzRing ) | 
						
							| 76 | 1 6 | oppr2idl | ⊢ ( 𝜑  →  ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑂 ) ) | 
						
							| 77 | 4 76 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  ( 2Ideal ‘ 𝑂 ) ) | 
						
							| 78 | 77 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑀  ∈  ( 2Ideal ‘ 𝑂 ) ) | 
						
							| 79 | 1 21 | opprbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑂 ) | 
						
							| 80 |  | eqid | ⊢ ( oppr ‘ 𝑄 )  =  ( oppr ‘ 𝑄 ) | 
						
							| 81 | 80 | opprdrng | ⊢ ( 𝑄  ∈  DivRing  ↔  ( oppr ‘ 𝑄 )  ∈  DivRing ) | 
						
							| 82 | 21 1 2 6 4 | opprqusdrng | ⊢ ( 𝜑  →  ( ( oppr ‘ 𝑄 )  ∈  DivRing  ↔  ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) )  ∈  DivRing ) ) | 
						
							| 83 | 82 | biimpa | ⊢ ( ( 𝜑  ∧  ( oppr ‘ 𝑄 )  ∈  DivRing )  →  ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) )  ∈  DivRing ) | 
						
							| 84 | 81 83 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) )  ∈  DivRing ) | 
						
							| 85 | 84 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  ( 𝑂  /s  ( 𝑂  ~QG  𝑀 ) )  ∈  DivRing ) | 
						
							| 86 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑗  ∈  ( LIdeal ‘ 𝑂 ) ) | 
						
							| 87 | 65 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑀  ⊆  𝑗 ) | 
						
							| 88 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑥  ∈  ( 𝑗  ∖  𝑀 ) ) | 
						
							| 89 | 71 72 75 78 79 85 86 87 88 | qsdrnglem2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  ∧  𝑥  ∈  ( 𝑗  ∖  𝑀 ) )  →  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 90 | 70 89 | exlimddv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  ∧  ¬  𝑗  =  𝑀 )  →  𝑗  =  ( Base ‘ 𝑅 ) ) | 
						
							| 91 | 90 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( ¬  𝑗  =  𝑀  →  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 92 | 91 | orrd | ⊢ ( ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  ∧  𝑀  ⊆  𝑗 )  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) | 
						
							| 93 | 92 | ex | ⊢ ( ( ( 𝜑  ∧  𝑄  ∈  DivRing )  ∧  𝑗  ∈  ( LIdeal ‘ 𝑂 ) )  →  ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 94 | 93 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑂 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 95 | 79 | ismxidl | ⊢ ( 𝑂  ∈  Ring  →  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑂 )  ↔  ( 𝑀  ∈  ( LIdeal ‘ 𝑂 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑂 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 96 | 95 | biimpar | ⊢ ( ( 𝑂  ∈  Ring  ∧  ( 𝑀  ∈  ( LIdeal ‘ 𝑂 )  ∧  𝑀  ≠  ( Base ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( LIdeal ‘ 𝑂 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  ( Base ‘ 𝑅 ) ) ) ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) | 
						
							| 97 | 62 64 36 94 96 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) | 
						
							| 98 | 59 97 | jca | ⊢ ( ( 𝜑  ∧  𝑄  ∈  DivRing )  →  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) ) | 
						
							| 99 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) )  →  𝑅  ∈  NzRing ) | 
						
							| 100 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑅 ) ) | 
						
							| 101 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) )  →  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) | 
						
							| 102 | 1 2 99 100 101 | qsdrngi | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) )  →  𝑄  ∈  DivRing ) | 
						
							| 103 | 98 102 | impbida | ⊢ ( 𝜑  →  ( 𝑄  ∈  DivRing  ↔  ( 𝑀  ∈  ( MaxIdeal ‘ 𝑅 )  ∧  𝑀  ∈  ( MaxIdeal ‘ 𝑂 ) ) ) ) |