| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
| 2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
| 3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
| 4 |
|
qsdrngi.1 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
| 5 |
|
qsdrngi.2 |
|- ( ph -> M e. ( MaxIdeal ` O ) ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 8 |
3 7
|
syl |
|- ( ph -> R e. Ring ) |
| 9 |
6
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| 10 |
8 4 9
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` R ) ) |
| 11 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
| 12 |
8 11
|
syl |
|- ( ph -> O e. Ring ) |
| 13 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
| 14 |
13
|
mxidlidl |
|- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) |
| 15 |
12 5 14
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` O ) ) |
| 16 |
10 15
|
elind |
|- ( ph -> M e. ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) ) |
| 17 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 18 |
|
eqid |
|- ( LIdeal ` O ) = ( LIdeal ` O ) |
| 19 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 20 |
17 1 18 19
|
2idlval |
|- ( 2Ideal ` R ) = ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) |
| 21 |
16 20
|
eleqtrrdi |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
| 22 |
6
|
mxidlnr |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= ( Base ` R ) ) |
| 23 |
8 4 22
|
syl2anc |
|- ( ph -> M =/= ( Base ` R ) ) |
| 24 |
2 6 8 3 21 23
|
qsnzr |
|- ( ph -> Q e. NzRing ) |
| 25 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
| 26 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 27 |
25 26
|
nzrnz |
|- ( Q e. NzRing -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
| 28 |
24 27
|
syl |
|- ( ph -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
| 29 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 30 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 31 |
|
eqid |
|- ( Unit ` Q ) = ( Unit ` Q ) |
| 32 |
2 19
|
qusring |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
| 33 |
8 21 32
|
syl2anc |
|- ( ph -> Q e. Ring ) |
| 34 |
33
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> Q e. Ring ) |
| 35 |
34
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> Q e. Ring ) |
| 36 |
|
eldifi |
|- ( u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> u e. ( Base ` Q ) ) |
| 37 |
36
|
adantl |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> u e. ( Base ` Q ) ) |
| 38 |
37
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> u e. ( Base ` Q ) ) |
| 39 |
|
ovex |
|- ( R ~QG M ) e. _V |
| 40 |
39
|
ecelqsi |
|- ( r e. ( Base ` R ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 41 |
40
|
ad4antlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 42 |
2
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG M ) ) ) |
| 43 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 44 |
|
ovexd |
|- ( ph -> ( R ~QG M ) e. _V ) |
| 45 |
42 43 44 3
|
qusbas |
|- ( ph -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
| 47 |
46
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
| 48 |
41 47
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ r ] ( R ~QG M ) e. ( Base ` Q ) ) |
| 49 |
39
|
ecelqsi |
|- ( s e. ( Base ` R ) -> [ s ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 50 |
49
|
ad2antlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 51 |
50 47
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) e. ( Base ` Q ) ) |
| 52 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> v = [ r ] ( R ~QG M ) ) |
| 53 |
|
simp-9r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> u = [ x ] ( R ~QG M ) ) |
| 54 |
53
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( R ~QG M ) = u ) |
| 55 |
52 54
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( [ r ] ( R ~QG M ) ( .r ` Q ) u ) ) |
| 56 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
| 57 |
55 56
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ r ] ( R ~QG M ) ( .r ` Q ) u ) = ( 1r ` Q ) ) |
| 58 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
| 59 |
|
eqid |
|- ( .r ` ( oppR ` Q ) ) = ( .r ` ( oppR ` Q ) ) |
| 60 |
29 30 58 59
|
opprmul |
|- ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) |
| 61 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 62 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> R e. Ring ) |
| 63 |
62
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> R e. Ring ) |
| 64 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
| 65 |
64
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
| 66 |
6 1 2 63 65 29 51 38
|
opprqusmulr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( [ s ] ( R ~QG M ) ( .r ` ( O /s ( O ~QG M ) ) ) u ) ) |
| 67 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> w = [ s ] ( R ~QG M ) ) |
| 68 |
6 17
|
lidlss |
|- ( M e. ( LIdeal ` R ) -> M C_ ( Base ` R ) ) |
| 69 |
10 68
|
syl |
|- ( ph -> M C_ ( Base ` R ) ) |
| 70 |
1 6
|
oppreqg |
|- ( ( R e. Ring /\ M C_ ( Base ` R ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
| 71 |
8 69 70
|
syl2anc |
|- ( ph -> ( R ~QG M ) = ( O ~QG M ) ) |
| 72 |
71
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
| 74 |
73
|
eceq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( R ~QG M ) = [ x ] ( O ~QG M ) ) |
| 75 |
53 74
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( O ~QG M ) = u ) |
| 76 |
67 75
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( [ s ] ( R ~QG M ) ( .r ` ( O /s ( O ~QG M ) ) ) u ) ) |
| 77 |
66 76
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) ) |
| 78 |
58 25
|
oppr1 |
|- ( 1r ` Q ) = ( 1r ` ( oppR ` Q ) ) |
| 79 |
6 1 2 8 21
|
opprqus1r |
|- ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 80 |
78 79
|
eqtrid |
|- ( ph -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 81 |
80
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 82 |
81
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 83 |
61 77 82
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( 1r ` Q ) ) |
| 84 |
60 83
|
eqtr3id |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
| 85 |
29 26 25 30 31 35 38 48 51 57 84
|
ringinveu |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) = [ r ] ( R ~QG M ) ) |
| 86 |
85 67 52
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> v = w ) |
| 87 |
86
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( u ( .r ` Q ) w ) ) |
| 88 |
67
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) w ) = ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) ) |
| 89 |
87 88 84
|
3eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
| 90 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) |
| 91 |
71
|
qseq2d |
|- ( ph -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( ( Base ` R ) /. ( O ~QG M ) ) ) |
| 92 |
91
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( ( Base ` R ) /. ( O ~QG M ) ) ) |
| 93 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) ) |
| 94 |
1 6
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 95 |
94
|
a1i |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( Base ` R ) = ( Base ` O ) ) |
| 96 |
|
ovexd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( O ~QG M ) e. _V ) |
| 97 |
1
|
fvexi |
|- O e. _V |
| 98 |
97
|
a1i |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> O e. _V ) |
| 99 |
93 95 96 98
|
qusbas |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( O ~QG M ) ) = ( Base ` ( O /s ( O ~QG M ) ) ) ) |
| 100 |
92 99
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( Base ` ( O /s ( O ~QG M ) ) ) = ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 101 |
90 100
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> w e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 102 |
|
elqsi |
|- ( w e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. s e. ( Base ` R ) w = [ s ] ( R ~QG M ) ) |
| 103 |
101 102
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> E. s e. ( Base ` R ) w = [ s ] ( R ~QG M ) ) |
| 104 |
89 103
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
| 105 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> v e. ( Base ` Q ) ) |
| 106 |
46
|
ad6antr |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
| 107 |
105 106
|
eleqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> v e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 108 |
|
elqsi |
|- ( v e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. r e. ( Base ` R ) v = [ r ] ( R ~QG M ) ) |
| 109 |
107 108
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> E. r e. ( Base ` R ) v = [ r ] ( R ~QG M ) ) |
| 110 |
104 109
|
r19.29a |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
| 111 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 112 |
|
eqid |
|- ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) |
| 113 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> R e. NzRing ) |
| 114 |
1
|
opprnzr |
|- ( R e. NzRing -> O e. NzRing ) |
| 115 |
113 114
|
syl |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> O e. NzRing ) |
| 116 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` O ) ) |
| 117 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` R ) ) |
| 118 |
1 62 117
|
opprmxidlabs |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` ( oppR ` O ) ) ) |
| 119 |
|
simplr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> x e. ( Base ` R ) ) |
| 120 |
94
|
a1i |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> ( Base ` R ) = ( Base ` O ) ) |
| 121 |
119 120
|
eleqtrd |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> x e. ( Base ` O ) ) |
| 122 |
|
simplr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> u = [ x ] ( R ~QG M ) ) |
| 123 |
8
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 124 |
123
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> R e. Grp ) |
| 125 |
|
lidlnsg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) |
| 126 |
8 10 125
|
syl2anc |
|- ( ph -> M e. ( NrmSGrp ` R ) ) |
| 127 |
|
nsgsubg |
|- ( M e. ( NrmSGrp ` R ) -> M e. ( SubGrp ` R ) ) |
| 128 |
126 127
|
syl |
|- ( ph -> M e. ( SubGrp ` R ) ) |
| 129 |
128
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> M e. ( SubGrp ` R ) ) |
| 130 |
|
simpr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> x e. M ) |
| 131 |
|
eqid |
|- ( R ~QG M ) = ( R ~QG M ) |
| 132 |
131
|
eqg0el |
|- ( ( R e. Grp /\ M e. ( SubGrp ` R ) ) -> ( [ x ] ( R ~QG M ) = M <-> x e. M ) ) |
| 133 |
132
|
biimpar |
|- ( ( ( R e. Grp /\ M e. ( SubGrp ` R ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = M ) |
| 134 |
124 129 130 133
|
syl21anc |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = M ) |
| 135 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 136 |
6 131 135
|
eqgid |
|- ( M e. ( SubGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG M ) = M ) |
| 137 |
129 136
|
syl |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ ( 0g ` R ) ] ( R ~QG M ) = M ) |
| 138 |
134 137
|
eqtr4d |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = [ ( 0g ` R ) ] ( R ~QG M ) ) |
| 139 |
2 135
|
qus0 |
|- ( M e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
| 140 |
126 139
|
syl |
|- ( ph -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
| 141 |
140
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
| 142 |
122 138 141
|
3eqtrd |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> u = ( 0g ` Q ) ) |
| 143 |
|
eldifsnneq |
|- ( u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> -. u = ( 0g ` Q ) ) |
| 144 |
143
|
ad4antlr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> -. u = ( 0g ` Q ) ) |
| 145 |
142 144
|
pm2.65da |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> -. x e. M ) |
| 146 |
111 112 115 116 118 121 145
|
qsdrngilem |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. w e. ( Base ` ( O /s ( O ~QG M ) ) ) ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 147 |
146
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> E. w e. ( Base ` ( O /s ( O ~QG M ) ) ) ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
| 148 |
110 147
|
r19.29a |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
| 149 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> u = [ x ] ( R ~QG M ) ) |
| 150 |
149
|
oveq2d |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) u ) = ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) ) |
| 151 |
|
simpr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
| 152 |
150 151
|
eqtrd |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) |
| 153 |
148 152
|
jca |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
| 154 |
153
|
anasss |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ ( v e. ( Base ` Q ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) ) -> ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
| 155 |
1 2 113 117 116 119 145
|
qsdrngilem |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. v e. ( Base ` Q ) ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
| 156 |
154 155
|
reximddv |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
| 157 |
37 46
|
eleqtrrd |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> u e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
| 158 |
|
elqsi |
|- ( u e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. x e. ( Base ` R ) u = [ x ] ( R ~QG M ) ) |
| 159 |
157 158
|
syl |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> E. x e. ( Base ` R ) u = [ x ] ( R ~QG M ) ) |
| 160 |
156 159
|
r19.29a |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
| 161 |
160
|
ralrimiva |
|- ( ph -> A. u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
| 162 |
29 26 25 30 31 33
|
isdrng4 |
|- ( ph -> ( Q e. DivRing <-> ( ( 1r ` Q ) =/= ( 0g ` Q ) /\ A. u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) ) ) |
| 163 |
28 161 162
|
mpbir2and |
|- ( ph -> Q e. DivRing ) |