Metamath Proof Explorer


Theorem irngnminplynz

Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses irngnminplynz.z 𝑍 = ( 0g ‘ ( Poly1𝐸 ) )
irngnminplynz.e ( 𝜑𝐸 ∈ Field )
irngnminplynz.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
irngnminplynz.m 𝑀 = ( 𝐸 minPoly 𝐹 )
irngnminplynz.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
Assertion irngnminplynz ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )

Proof

Step Hyp Ref Expression
1 irngnminplynz.z 𝑍 = ( 0g ‘ ( Poly1𝐸 ) )
2 irngnminplynz.e ( 𝜑𝐸 ∈ Field )
3 irngnminplynz.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
4 irngnminplynz.m 𝑀 = ( 𝐸 minPoly 𝐹 )
5 irngnminplynz.a ( 𝜑𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) )
6 sdrgsubrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
7 3 6 syl ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
8 eqid ( 𝐸s 𝐹 ) = ( 𝐸s 𝐹 )
9 8 subrgring ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸s 𝐹 ) ∈ Ring )
10 7 9 syl ( 𝜑 → ( 𝐸s 𝐹 ) ∈ Ring )
11 eqid ( Poly1 ‘ ( 𝐸s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
12 11 ply1ring ( ( 𝐸s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring )
13 10 12 syl ( 𝜑 → ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring )
14 eqid ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 )
15 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
16 2 fldcrngd ( 𝜑𝐸 ∈ CRing )
17 eqid ( 0g𝐸 ) = ( 0g𝐸 )
18 14 8 15 17 16 7 irngssv ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) )
19 18 5 sseldd ( 𝜑𝐴 ∈ ( Base ‘ 𝐸 ) )
20 eqid { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) }
21 14 11 15 16 7 19 17 20 ply1annidl ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
22 eqid ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
23 eqid ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
24 22 23 lidlss ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ⊆ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
25 21 24 syl ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ⊆ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
26 8 sdrgdrng ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸s 𝐹 ) ∈ DivRing )
27 3 26 syl ( 𝜑 → ( 𝐸s 𝐹 ) ∈ DivRing )
28 eqid ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
29 11 28 23 ig1pcl ( ( ( 𝐸s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ) → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
30 27 21 29 syl2anc ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
31 25 30 sseldd ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
32 eqid ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
33 14 11 15 2 3 19 17 20 32 28 ply1annig1p ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) )
34 fveq2 ( 𝑞 = 𝑝 → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) = ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) )
35 34 fveq1d ( 𝑞 = 𝑝 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) )
36 35 eqeq1d ( 𝑞 = 𝑝 → ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) ↔ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g𝐸 ) ) )
37 simplr ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) )
38 37 eldifad ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝 ∈ dom ( 𝐸 evalSub1 𝐹 ) )
39 16 ad2antrr ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝐸 ∈ CRing )
40 7 ad2antrr ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) )
41 14 11 22 16 7 evls1dm ( 𝜑 → dom ( 𝐸 evalSub1 𝐹 ) = ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
42 41 ad2antrr ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → dom ( 𝐸 evalSub1 𝐹 ) = ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
43 38 42 eleqtrd ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
44 14 11 22 39 40 15 43 evls1fvf ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐸 ) )
45 44 ffnd ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) )
46 elpreima ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) → ( 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ↔ ( 𝐴 ∈ ( Base ‘ 𝐸 ) ∧ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g𝐸 ) } ) ) )
47 46 simplbda ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g𝐸 ) } )
48 45 47 sylancom ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g𝐸 ) } )
49 elsni ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g𝐸 ) } → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g𝐸 ) )
50 48 49 syl ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g𝐸 ) )
51 36 38 50 elrabd ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝 ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } )
52 eldifsni ( 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) → 𝑝𝑍 )
53 37 52 syl ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝𝑍 )
54 eqid ( Poly1𝐸 ) = ( Poly1𝐸 )
55 54 8 11 22 7 1 ressply10g ( 𝜑𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
56 55 ad2antrr ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
57 53 56 neeqtrd ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
58 nelsn ( 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) → ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
59 57 58 syl ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
60 nelne1 ( ( 𝑝 ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ∧ ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
61 51 59 60 syl2anc ( ( ( 𝜑𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
62 14 1 17 2 3 irngnzply1 ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) = 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) )
63 5 62 eleqtrd ( 𝜑𝐴 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) )
64 eliun ( 𝐴 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) ↔ ∃ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) )
65 63 64 sylib ( 𝜑 → ∃ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) 𝐴 ∈ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g𝐸 ) } ) )
66 61 65 r19.29a ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
67 33 66 eqnetrrd ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } )
68 eqid ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) )
69 22 68 32 pidlnzb ( ( ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring ∧ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ) → ( ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ↔ ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) )
70 69 biimpar ( ( ( ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ∈ Ring ∧ ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ) ∧ ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) } ) → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
71 13 31 67 70 syl21anc ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸s 𝐹 ) ) ) )
72 14 11 15 2 3 19 17 20 32 28 4 minplyval ( 𝜑 → ( 𝑀𝐴 ) = ( ( idlGen1p ‘ ( 𝐸s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g𝐸 ) } ) )
73 71 72 55 3netr4d ( 𝜑 → ( 𝑀𝐴 ) ≠ 𝑍 )