| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irngnminplynz.z |
⊢ 𝑍 = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 2 |
|
irngnminplynz.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 3 |
|
irngnminplynz.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 4 |
|
irngnminplynz.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 5 |
|
irngnminplynz.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 6 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 8 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 9 |
8
|
subrgring |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 12 |
11
|
ply1ring |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 16 |
2
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 18 |
14 8 15 17 16 7
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 19 |
18 5
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
| 20 |
|
eqid |
⊢ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 21 |
14 11 15 16 7 19 17 20
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 23 |
|
eqid |
⊢ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 24 |
22 23
|
lidlss |
⊢ ( { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ⊆ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 25 |
21 24
|
syl |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ⊆ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 26 |
8
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 27 |
3 26
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 28 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 29 |
11 28 23
|
ig1pcl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 30 |
27 21 29
|
syl2anc |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 31 |
25 30
|
sseldd |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 32 |
|
eqid |
⊢ ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 33 |
14 11 15 2 3 19 17 20 32 28
|
ply1annig1p |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) = ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ) |
| 35 |
34
|
fveq1d |
⊢ ( 𝑞 = 𝑝 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 36 |
35
|
eqeq1d |
⊢ ( 𝑞 = 𝑝 → ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ↔ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) |
| 38 |
37
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ∈ dom ( 𝐸 evalSub1 𝐹 ) ) |
| 39 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝐸 ∈ CRing ) |
| 40 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 41 |
14 11 22 16 7
|
evls1dm |
⊢ ( 𝜑 → dom ( 𝐸 evalSub1 𝐹 ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → dom ( 𝐸 evalSub1 𝐹 ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 43 |
38 42
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 44 |
14 11 22 39 40 15 43
|
evls1fvf |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 45 |
44
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ) |
| 46 |
|
elpreima |
⊢ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) → ( 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ↔ ( 𝐴 ∈ ( Base ‘ 𝐸 ) ∧ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g ‘ 𝐸 ) } ) ) ) |
| 47 |
46
|
simplbda |
⊢ ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) Fn ( Base ‘ 𝐸 ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g ‘ 𝐸 ) } ) |
| 48 |
45 47
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g ‘ 𝐸 ) } ) |
| 49 |
|
elsni |
⊢ ( ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) ∈ { ( 0g ‘ 𝐸 ) } → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 51 |
36 38 50
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 52 |
|
eldifsni |
⊢ ( 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) → 𝑝 ≠ 𝑍 ) |
| 53 |
37 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ≠ 𝑍 ) |
| 54 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 55 |
54 8 11 22 7 1
|
ressply10g |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑍 = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 57 |
53 56
|
neeqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 58 |
|
nelsn |
⊢ ( 𝑝 ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) → ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 60 |
|
nelne1 |
⊢ ( ( 𝑝 ∈ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∧ ¬ 𝑝 ∈ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 61 |
51 59 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ) ∧ 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 62 |
14 1 17 2 3
|
irngnzply1 |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) = ∪ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) |
| 63 |
5 62
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) |
| 64 |
|
eliun |
⊢ ( 𝐴 ∈ ∪ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ↔ ∃ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) |
| 65 |
63 64
|
sylib |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( dom ( 𝐸 evalSub1 𝐹 ) ∖ { 𝑍 } ) 𝐴 ∈ ( ◡ ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑝 ) “ { ( 0g ‘ 𝐸 ) } ) ) |
| 66 |
61 65
|
r19.29a |
⊢ ( 𝜑 → { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 67 |
33 66
|
eqnetrrd |
⊢ ( 𝜑 → ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) |
| 68 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 69 |
22 68 32
|
pidlnzb |
⊢ ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ∧ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ↔ ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) ) |
| 70 |
69
|
biimpar |
⊢ ( ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ∧ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ∧ ( ( RSpan ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ‘ { ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ≠ { ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) } ) → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 71 |
13 31 67 70
|
syl21anc |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ≠ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 72 |
14 11 15 2 3 19 17 20 32 28 4
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom ( 𝐸 evalSub1 𝐹 ) ∣ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 73 |
71 72 55
|
3netr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |