Step |
Hyp |
Ref |
Expression |
1 |
|
irngnminplynz.z |
|- Z = ( 0g ` ( Poly1 ` E ) ) |
2 |
|
irngnminplynz.e |
|- ( ph -> E e. Field ) |
3 |
|
irngnminplynz.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
4 |
|
irngnminplynz.m |
|- M = ( E minPoly F ) |
5 |
|
irngnminplynz.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
6 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
7 |
3 6
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
8 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
9 |
8
|
subrgring |
|- ( F e. ( SubRing ` E ) -> ( E |`s F ) e. Ring ) |
10 |
7 9
|
syl |
|- ( ph -> ( E |`s F ) e. Ring ) |
11 |
|
eqid |
|- ( Poly1 ` ( E |`s F ) ) = ( Poly1 ` ( E |`s F ) ) |
12 |
11
|
ply1ring |
|- ( ( E |`s F ) e. Ring -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
13 |
10 12
|
syl |
|- ( ph -> ( Poly1 ` ( E |`s F ) ) e. Ring ) |
14 |
|
eqid |
|- ( E evalSub1 F ) = ( E evalSub1 F ) |
15 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
16 |
2
|
fldcrngd |
|- ( ph -> E e. CRing ) |
17 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
18 |
14 8 15 17 16 7
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
19 |
18 5
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
20 |
|
eqid |
|- { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } = { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } |
21 |
14 11 15 16 7 19 17 20
|
ply1annidl |
|- ( ph -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` ( Poly1 ` ( E |`s F ) ) ) ) |
22 |
|
eqid |
|- ( Base ` ( Poly1 ` ( E |`s F ) ) ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) |
23 |
|
eqid |
|- ( LIdeal ` ( Poly1 ` ( E |`s F ) ) ) = ( LIdeal ` ( Poly1 ` ( E |`s F ) ) ) |
24 |
22 23
|
lidlss |
|- ( { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` ( Poly1 ` ( E |`s F ) ) ) -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } C_ ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
25 |
21 24
|
syl |
|- ( ph -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } C_ ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
26 |
8
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
27 |
3 26
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
28 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
29 |
11 28 23
|
ig1pcl |
|- ( ( ( E |`s F ) e. DivRing /\ { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) e. { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) |
30 |
27 21 29
|
syl2anc |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) e. { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) |
31 |
25 30
|
sseldd |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
32 |
|
eqid |
|- ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) = ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) |
33 |
14 11 15 2 3 19 17 20 32 28
|
ply1annig1p |
|- ( ph -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } = ( ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
34 |
|
fveq2 |
|- ( q = p -> ( ( E evalSub1 F ) ` q ) = ( ( E evalSub1 F ) ` p ) ) |
35 |
34
|
fveq1d |
|- ( q = p -> ( ( ( E evalSub1 F ) ` q ) ` A ) = ( ( ( E evalSub1 F ) ` p ) ` A ) ) |
36 |
35
|
eqeq1d |
|- ( q = p -> ( ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) <-> ( ( ( E evalSub1 F ) ` p ) ` A ) = ( 0g ` E ) ) ) |
37 |
|
simplr |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p e. ( dom ( E evalSub1 F ) \ { Z } ) ) |
38 |
37
|
eldifad |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p e. dom ( E evalSub1 F ) ) |
39 |
16
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> E e. CRing ) |
40 |
7
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> F e. ( SubRing ` E ) ) |
41 |
14 11 22 16 7
|
evls1dm |
|- ( ph -> dom ( E evalSub1 F ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> dom ( E evalSub1 F ) = ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
43 |
38 42
|
eleqtrd |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) |
44 |
14 11 22 39 40 15 43
|
evls1fvf |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> ( ( E evalSub1 F ) ` p ) : ( Base ` E ) --> ( Base ` E ) ) |
45 |
44
|
ffnd |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> ( ( E evalSub1 F ) ` p ) Fn ( Base ` E ) ) |
46 |
|
elpreima |
|- ( ( ( E evalSub1 F ) ` p ) Fn ( Base ` E ) -> ( A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) <-> ( A e. ( Base ` E ) /\ ( ( ( E evalSub1 F ) ` p ) ` A ) e. { ( 0g ` E ) } ) ) ) |
47 |
46
|
simplbda |
|- ( ( ( ( E evalSub1 F ) ` p ) Fn ( Base ` E ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> ( ( ( E evalSub1 F ) ` p ) ` A ) e. { ( 0g ` E ) } ) |
48 |
45 47
|
sylancom |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> ( ( ( E evalSub1 F ) ` p ) ` A ) e. { ( 0g ` E ) } ) |
49 |
|
elsni |
|- ( ( ( ( E evalSub1 F ) ` p ) ` A ) e. { ( 0g ` E ) } -> ( ( ( E evalSub1 F ) ` p ) ` A ) = ( 0g ` E ) ) |
50 |
48 49
|
syl |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> ( ( ( E evalSub1 F ) ` p ) ` A ) = ( 0g ` E ) ) |
51 |
36 38 50
|
elrabd |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p e. { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) |
52 |
|
eldifsni |
|- ( p e. ( dom ( E evalSub1 F ) \ { Z } ) -> p =/= Z ) |
53 |
37 52
|
syl |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p =/= Z ) |
54 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
55 |
54 8 11 22 7 1
|
ressply10g |
|- ( ph -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
56 |
55
|
ad2antrr |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> Z = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
57 |
53 56
|
neeqtrd |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> p =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
58 |
|
nelsn |
|- ( p =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) -> -. p e. { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
59 |
57 58
|
syl |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> -. p e. { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
60 |
|
nelne1 |
|- ( ( p e. { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } /\ -. p e. { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
61 |
51 59 60
|
syl2anc |
|- ( ( ( ph /\ p e. ( dom ( E evalSub1 F ) \ { Z } ) ) /\ A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
62 |
14 1 17 2 3
|
irngnzply1 |
|- ( ph -> ( E IntgRing F ) = U_ p e. ( dom ( E evalSub1 F ) \ { Z } ) ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) |
63 |
5 62
|
eleqtrd |
|- ( ph -> A e. U_ p e. ( dom ( E evalSub1 F ) \ { Z } ) ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) |
64 |
|
eliun |
|- ( A e. U_ p e. ( dom ( E evalSub1 F ) \ { Z } ) ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) <-> E. p e. ( dom ( E evalSub1 F ) \ { Z } ) A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) |
65 |
63 64
|
sylib |
|- ( ph -> E. p e. ( dom ( E evalSub1 F ) \ { Z } ) A e. ( `' ( ( E evalSub1 F ) ` p ) " { ( 0g ` E ) } ) ) |
66 |
61 65
|
r19.29a |
|- ( ph -> { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
67 |
33 66
|
eqnetrrd |
|- ( ph -> ( ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) } ) =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) |
68 |
|
eqid |
|- ( 0g ` ( Poly1 ` ( E |`s F ) ) ) = ( 0g ` ( Poly1 ` ( E |`s F ) ) ) |
69 |
22 68 32
|
pidlnzb |
|- ( ( ( Poly1 ` ( E |`s F ) ) e. Ring /\ ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) -> ( ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) <-> ( ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) } ) =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) ) |
70 |
69
|
biimpar |
|- ( ( ( ( Poly1 ` ( E |`s F ) ) e. Ring /\ ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) e. ( Base ` ( Poly1 ` ( E |`s F ) ) ) ) /\ ( ( RSpan ` ( Poly1 ` ( E |`s F ) ) ) ` { ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) } ) =/= { ( 0g ` ( Poly1 ` ( E |`s F ) ) ) } ) -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
71 |
13 31 67 70
|
syl21anc |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) =/= ( 0g ` ( Poly1 ` ( E |`s F ) ) ) ) |
72 |
14 11 15 2 3 19 17 20 32 28 4
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom ( E evalSub1 F ) | ( ( ( E evalSub1 F ) ` q ) ` A ) = ( 0g ` E ) } ) ) |
73 |
71 72 55
|
3netr4d |
|- ( ph -> ( M ` A ) =/= Z ) |