| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1fn.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
evls1fn.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
evls1fn.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 4 |
|
evls1fn.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
evls1fn.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 9 |
1 6 7 8 2
|
evls1rhm |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
| 10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) |
| 12 |
3 11
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s ( Base ‘ 𝑅 ) ) ) ) |
| 14 |
13
|
fdmd |
⊢ ( 𝜑 → dom 𝑂 = 𝑈 ) |