Metamath Proof Explorer


Theorem evls1fvf

Description: The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1fn.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
evls1fn.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
evls1fn.u 𝑈 = ( Base ‘ 𝑃 )
evls1fn.1 ( 𝜑𝑅 ∈ CRing )
evls1fn.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
evls1fvf.b 𝐵 = ( Base ‘ 𝑅 )
evls1fvf.q ( 𝜑𝑄𝑈 )
Assertion evls1fvf ( 𝜑 → ( 𝑂𝑄 ) : 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 evls1fn.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 evls1fn.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 evls1fn.u 𝑈 = ( Base ‘ 𝑃 )
4 evls1fn.1 ( 𝜑𝑅 ∈ CRing )
5 evls1fn.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
6 evls1fvf.b 𝐵 = ( Base ‘ 𝑅 )
7 evls1fvf.q ( 𝜑𝑄𝑈 )
8 eqid ( 𝑅s 𝐵 ) = ( 𝑅s 𝐵 )
9 eqid ( Base ‘ ( 𝑅s 𝐵 ) ) = ( Base ‘ ( 𝑅s 𝐵 ) )
10 6 fvexi 𝐵 ∈ V
11 10 a1i ( 𝜑𝐵 ∈ V )
12 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
13 1 6 8 12 2 evls1rhm ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐵 ) ) )
14 4 5 13 syl2anc ( 𝜑𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐵 ) ) )
15 3 9 rhmf ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
16 14 15 syl ( 𝜑𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s 𝐵 ) ) )
17 16 7 ffvelcdmd ( 𝜑 → ( 𝑂𝑄 ) ∈ ( Base ‘ ( 𝑅s 𝐵 ) ) )
18 8 6 9 4 11 17 pwselbas ( 𝜑 → ( 𝑂𝑄 ) : 𝐵𝐵 )