Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fn.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
evls1fn.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
3 |
|
evls1fn.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
4 |
|
evls1fn.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
evls1fn.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
evls1fvf.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
evls1fvf.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑈 ) |
8 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
10 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
12 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
13 |
1 6 8 12 2
|
evls1rhm |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
14 |
4 5 13
|
syl2anc |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
15 |
3 9
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
17 |
16 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑄 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
18 |
8 6 9 4 11 17
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑄 ) : 𝐵 ⟶ 𝐵 ) |