| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
| 2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
| 3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
| 4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
| 5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
| 6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
| 8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
| 9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
| 10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
| 11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
| 12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
| 13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
| 14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
| 15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
| 16 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 17 |
6 16
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 18 |
17
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 19 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
| 20 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 21 |
20
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
| 22 |
18 19 21
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
| 23 |
1 20
|
ressbas2 |
|- ( F C_ ( Base ` E ) -> F = ( Base ` K ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> F = ( Base ` K ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( subringAlg ` L ) ` ( Base ` K ) ) ) |
| 26 |
25
|
fveq2d |
|- ( ph -> ( dim ` ( ( subringAlg ` L ) ` F ) ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
| 27 |
|
eqid |
|- ( 0g ` ( ( subringAlg ` L ) ` F ) ) = ( 0g ` ( ( subringAlg ` L ) ` F ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem2 |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` L ) ` F ) ) ) |
| 29 |
|
eqid |
|- ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) |
| 30 |
|
eqid |
|- ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) |
| 31 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
| 32 |
9 31
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
| 33 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> E e. Field ) |
| 34 |
6
|
adantr |
|- ( ( ph /\ p e. U ) -> F e. ( SubDRing ` E ) ) |
| 35 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 36 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 37 |
8 1 20 35 36 18
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
| 38 |
37 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ p e. U ) -> A e. ( Base ` E ) ) |
| 40 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
| 41 |
20 8 32 10 33 34 39 40
|
evls1fldgencl |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
| 43 |
11
|
rnmptss |
|- ( A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
| 44 |
42 43
|
syl |
|- ( ph -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
| 45 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 46 |
8 32 20 10 36 18 38 11
|
evls1maprhm |
|- ( ph -> G e. ( P RingHom E ) ) |
| 47 |
|
rnrhmsubrg |
|- ( G e. ( P RingHom E ) -> ran G e. ( SubRing ` E ) ) |
| 48 |
46 47
|
syl |
|- ( ph -> ran G e. ( SubRing ` E ) ) |
| 49 |
2
|
oveq1i |
|- ( L |`s ran G ) = ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) |
| 50 |
|
ovex |
|- ( E fldGen ( F u. { A } ) ) e. _V |
| 51 |
|
ressabs |
|- ( ( ( E fldGen ( F u. { A } ) ) e. _V /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) = ( E |`s ran G ) ) |
| 52 |
50 44 51
|
sylancr |
|- ( ph -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) = ( E |`s ran G ) ) |
| 53 |
49 52
|
eqtrid |
|- ( ph -> ( L |`s ran G ) = ( E |`s ran G ) ) |
| 54 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 55 |
38
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
| 56 |
22 55
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
| 57 |
20 45 56
|
fldgensdrg |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) ) |
| 58 |
|
issdrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
| 59 |
57 58
|
sylib |
|- ( ph -> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
| 60 |
59
|
simp2d |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
| 61 |
2
|
resrhm2b |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( G e. ( P RingHom E ) <-> G e. ( P RingHom L ) ) ) |
| 62 |
61
|
biimpa |
|- ( ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) /\ G e. ( P RingHom E ) ) -> G e. ( P RingHom L ) ) |
| 63 |
60 44 46 62
|
syl21anc |
|- ( ph -> G e. ( P RingHom L ) ) |
| 64 |
|
rhmghm |
|- ( G e. ( P RingHom L ) -> G e. ( P GrpHom L ) ) |
| 65 |
63 64
|
syl |
|- ( ph -> G e. ( P GrpHom L ) ) |
| 66 |
54 65 13 14 15 10 12
|
ghmquskerco |
|- ( ph -> G = ( J o. N ) ) |
| 67 |
66
|
rneqd |
|- ( ph -> ran G = ran ( J o. N ) ) |
| 68 |
14
|
a1i |
|- ( ph -> Q = ( P /s ( P ~QG Z ) ) ) |
| 69 |
10
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
| 70 |
|
ovexd |
|- ( ph -> ( P ~QG Z ) e. _V ) |
| 71 |
17
|
simp3d |
|- ( ph -> ( E |`s F ) e. DivRing ) |
| 72 |
32 71
|
ply1lvec |
|- ( ph -> P e. LVec ) |
| 73 |
68 69 70 72
|
qusbas |
|- ( ph -> ( U /. ( P ~QG Z ) ) = ( Base ` Q ) ) |
| 74 |
|
eqid |
|- ( U /. ( P ~QG Z ) ) = ( U /. ( P ~QG Z ) ) |
| 75 |
54
|
ghmker |
|- ( G e. ( P GrpHom L ) -> ( `' G " { ( 0g ` L ) } ) e. ( NrmSGrp ` P ) ) |
| 76 |
65 75
|
syl |
|- ( ph -> ( `' G " { ( 0g ` L ) } ) e. ( NrmSGrp ` P ) ) |
| 77 |
13 76
|
eqeltrid |
|- ( ph -> Z e. ( NrmSGrp ` P ) ) |
| 78 |
10 74 12 77
|
qusrn |
|- ( ph -> ran N = ( U /. ( P ~QG Z ) ) ) |
| 79 |
|
eqid |
|- ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) |
| 80 |
8 32 20 10 36 18 38 11 79
|
evls1maplmhm |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) |
| 81 |
80
|
elexd |
|- ( ph -> G e. _V ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> G e. _V ) |
| 83 |
82
|
imaexd |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> ( G " p ) e. _V ) |
| 84 |
83
|
uniexd |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> U. ( G " p ) e. _V ) |
| 85 |
15 84
|
dmmptd |
|- ( ph -> dom J = ( Base ` Q ) ) |
| 86 |
73 78 85
|
3eqtr4rd |
|- ( ph -> dom J = ran N ) |
| 87 |
|
rncoeq |
|- ( dom J = ran N -> ran ( J o. N ) = ran J ) |
| 88 |
86 87
|
syl |
|- ( ph -> ran ( J o. N ) = ran J ) |
| 89 |
67 88
|
eqtrd |
|- ( ph -> ran G = ran J ) |
| 90 |
89
|
oveq2d |
|- ( ph -> ( L |`s ran G ) = ( L |`s ran J ) ) |
| 91 |
|
eqid |
|- ( L |`s ran J ) = ( L |`s ran J ) |
| 92 |
1
|
subrgcrng |
|- ( ( E e. CRing /\ F e. ( SubRing ` E ) ) -> K e. CRing ) |
| 93 |
36 18 92
|
syl2anc |
|- ( ph -> K e. CRing ) |
| 94 |
9
|
ply1crng |
|- ( K e. CRing -> P e. CRing ) |
| 95 |
93 94
|
syl |
|- ( ph -> P e. CRing ) |
| 96 |
54 63 13 14 15 95
|
rhmquskerlem |
|- ( ph -> J e. ( Q RingHom L ) ) |
| 97 |
8 32 20 10 36 18 38 11
|
evls1maprnss |
|- ( ph -> F C_ ran G ) |
| 98 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 99 |
1 98
|
subrg1 |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) = ( 1r ` K ) ) |
| 100 |
18 99
|
syl |
|- ( ph -> ( 1r ` E ) = ( 1r ` K ) ) |
| 101 |
98
|
subrg1cl |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) e. F ) |
| 102 |
18 101
|
syl |
|- ( ph -> ( 1r ` E ) e. F ) |
| 103 |
100 102
|
eqeltrrd |
|- ( ph -> ( 1r ` K ) e. F ) |
| 104 |
97 103
|
sseldd |
|- ( ph -> ( 1r ` K ) e. ran G ) |
| 105 |
|
drngnzr |
|- ( E e. DivRing -> E e. NzRing ) |
| 106 |
98 35
|
nzrnz |
|- ( E e. NzRing -> ( 1r ` E ) =/= ( 0g ` E ) ) |
| 107 |
45 105 106
|
3syl |
|- ( ph -> ( 1r ` E ) =/= ( 0g ` E ) ) |
| 108 |
36
|
crnggrpd |
|- ( ph -> E e. Grp ) |
| 109 |
108
|
grpmndd |
|- ( ph -> E e. Mnd ) |
| 110 |
|
sdrgsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
| 111 |
|
subrgsubg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) ) |
| 112 |
57 110 111
|
3syl |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) ) |
| 113 |
35
|
subg0cl |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
| 114 |
112 113
|
syl |
|- ( ph -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
| 115 |
20 45 56
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) |
| 116 |
2 20 35
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) /\ ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) -> ( 0g ` E ) = ( 0g ` L ) ) |
| 117 |
109 114 115 116
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` L ) ) |
| 118 |
107 100 117
|
3netr3d |
|- ( ph -> ( 1r ` K ) =/= ( 0g ` L ) ) |
| 119 |
|
nelsn |
|- ( ( 1r ` K ) =/= ( 0g ` L ) -> -. ( 1r ` K ) e. { ( 0g ` L ) } ) |
| 120 |
118 119
|
syl |
|- ( ph -> -. ( 1r ` K ) e. { ( 0g ` L ) } ) |
| 121 |
|
nelne1 |
|- ( ( ( 1r ` K ) e. ran G /\ -. ( 1r ` K ) e. { ( 0g ` L ) } ) -> ran G =/= { ( 0g ` L ) } ) |
| 122 |
104 120 121
|
syl2anc |
|- ( ph -> ran G =/= { ( 0g ` L ) } ) |
| 123 |
89 122
|
eqnetrrd |
|- ( ph -> ran J =/= { ( 0g ` L ) } ) |
| 124 |
|
eqid |
|- ( oppR ` P ) = ( oppR ` P ) |
| 125 |
1
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> K e. DivRing ) |
| 126 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
| 127 |
6 125 126
|
3syl |
|- ( ph -> K e. NzRing ) |
| 128 |
9
|
ply1nz |
|- ( K e. NzRing -> P e. NzRing ) |
| 129 |
127 128
|
syl |
|- ( ph -> P e. NzRing ) |
| 130 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } |
| 131 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
| 132 |
1
|
fveq2i |
|- ( idlGen1p ` K ) = ( idlGen1p ` ( E |`s F ) ) |
| 133 |
8 32 20 5 6 38 35 130 131 132
|
ply1annig1p |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( ( RSpan ` P ) ` { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
| 134 |
117
|
sneqd |
|- ( ph -> { ( 0g ` E ) } = { ( 0g ` L ) } ) |
| 135 |
134
|
imaeq2d |
|- ( ph -> ( `' G " { ( 0g ` E ) } ) = ( `' G " { ( 0g ` L ) } ) ) |
| 136 |
13 135
|
eqtr4id |
|- ( ph -> Z = ( `' G " { ( 0g ` E ) } ) ) |
| 137 |
10
|
mpteq1i |
|- ( p e. U |-> ( ( O ` p ) ` A ) ) = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
| 138 |
11 137
|
eqtri |
|- G = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
| 139 |
8 32 20 36 18 38 35 130 138
|
ply1annidllem |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( `' G " { ( 0g ` E ) } ) ) |
| 140 |
136 139
|
eqtr4d |
|- ( ph -> Z = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
| 141 |
|
eqid |
|- ( E minPoly F ) = ( E minPoly F ) |
| 142 |
8 32 20 5 6 38 35 130 131 132 141
|
minplyval |
|- ( ph -> ( ( E minPoly F ) ` A ) = ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
| 143 |
142
|
sneqd |
|- ( ph -> { ( ( E minPoly F ) ` A ) } = { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) |
| 144 |
143
|
fveq2d |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) = ( ( RSpan ` P ) ` { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
| 145 |
133 140 144
|
3eqtr4d |
|- ( ph -> Z = ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) ) |
| 146 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 147 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
| 148 |
147 5 6 141 7
|
irngnminplynz |
|- ( ph -> ( ( E minPoly F ) ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) |
| 149 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
| 150 |
149 1 9 10 18 147
|
ressply10g |
|- ( ph -> ( 0g ` ( Poly1 ` E ) ) = ( 0g ` P ) ) |
| 151 |
148 150
|
neeqtrd |
|- ( ph -> ( ( E minPoly F ) ` A ) =/= ( 0g ` P ) ) |
| 152 |
8 32 20 5 6 38 141 146 151
|
minplyirred |
|- ( ph -> ( ( E minPoly F ) ` A ) e. ( Irred ` P ) ) |
| 153 |
|
eqid |
|- ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) = ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) |
| 154 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
| 155 |
5 6 154
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
| 156 |
1 155
|
eqeltrid |
|- ( ph -> K e. Field ) |
| 157 |
9
|
ply1pid |
|- ( K e. Field -> P e. PID ) |
| 158 |
156 157
|
syl |
|- ( ph -> P e. PID ) |
| 159 |
8 32 20 5 6 38 35 130 131 132 141
|
minplycl |
|- ( ph -> ( ( E minPoly F ) ` A ) e. ( Base ` P ) ) |
| 160 |
159 10
|
eleqtrrdi |
|- ( ph -> ( ( E minPoly F ) ` A ) e. U ) |
| 161 |
95
|
crngringd |
|- ( ph -> P e. Ring ) |
| 162 |
160
|
snssd |
|- ( ph -> { ( ( E minPoly F ) ` A ) } C_ U ) |
| 163 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
| 164 |
131 10 163
|
rspcl |
|- ( ( P e. Ring /\ { ( ( E minPoly F ) ` A ) } C_ U ) -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( LIdeal ` P ) ) |
| 165 |
161 162 164
|
syl2anc |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( LIdeal ` P ) ) |
| 166 |
10 131 146 153 158 160 151 165
|
mxidlirred |
|- ( ph -> ( ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( MaxIdeal ` P ) <-> ( ( E minPoly F ) ` A ) e. ( Irred ` P ) ) ) |
| 167 |
152 166
|
mpbird |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( MaxIdeal ` P ) ) |
| 168 |
145 167
|
eqeltrd |
|- ( ph -> Z e. ( MaxIdeal ` P ) ) |
| 169 |
|
eqid |
|- ( MaxIdeal ` P ) = ( MaxIdeal ` P ) |
| 170 |
169 124
|
crngmxidl |
|- ( P e. CRing -> ( MaxIdeal ` P ) = ( MaxIdeal ` ( oppR ` P ) ) ) |
| 171 |
95 170
|
syl |
|- ( ph -> ( MaxIdeal ` P ) = ( MaxIdeal ` ( oppR ` P ) ) ) |
| 172 |
168 171
|
eleqtrd |
|- ( ph -> Z e. ( MaxIdeal ` ( oppR ` P ) ) ) |
| 173 |
124 14 129 168 172
|
qsdrngi |
|- ( ph -> Q e. DivRing ) |
| 174 |
91 54 96 123 173
|
rndrhmcl |
|- ( ph -> ( L |`s ran J ) e. DivRing ) |
| 175 |
90 174
|
eqeltrd |
|- ( ph -> ( L |`s ran G ) e. DivRing ) |
| 176 |
53 175
|
eqeltrrd |
|- ( ph -> ( E |`s ran G ) e. DivRing ) |
| 177 |
|
issdrg |
|- ( ran G e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ran G e. ( SubRing ` E ) /\ ( E |`s ran G ) e. DivRing ) ) |
| 178 |
45 48 176 177
|
syl3anbrc |
|- ( ph -> ran G e. ( SubDRing ` E ) ) |
| 179 |
|
fveq2 |
|- ( p = ( var1 ` K ) -> ( O ` p ) = ( O ` ( var1 ` K ) ) ) |
| 180 |
179
|
fveq1d |
|- ( p = ( var1 ` K ) -> ( ( O ` p ) ` A ) = ( ( O ` ( var1 ` K ) ) ` A ) ) |
| 181 |
180
|
eqeq2d |
|- ( p = ( var1 ` K ) -> ( A = ( ( O ` p ) ` A ) <-> A = ( ( O ` ( var1 ` K ) ) ` A ) ) ) |
| 182 |
1 71
|
eqeltrid |
|- ( ph -> K e. DivRing ) |
| 183 |
182
|
drngringd |
|- ( ph -> K e. Ring ) |
| 184 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
| 185 |
184 9 10
|
vr1cl |
|- ( K e. Ring -> ( var1 ` K ) e. U ) |
| 186 |
183 185
|
syl |
|- ( ph -> ( var1 ` K ) e. U ) |
| 187 |
8 184 1 20 36 18
|
evls1var |
|- ( ph -> ( O ` ( var1 ` K ) ) = ( _I |` ( Base ` E ) ) ) |
| 188 |
187
|
fveq1d |
|- ( ph -> ( ( O ` ( var1 ` K ) ) ` A ) = ( ( _I |` ( Base ` E ) ) ` A ) ) |
| 189 |
|
fvresi |
|- ( A e. ( Base ` E ) -> ( ( _I |` ( Base ` E ) ) ` A ) = A ) |
| 190 |
38 189
|
syl |
|- ( ph -> ( ( _I |` ( Base ` E ) ) ` A ) = A ) |
| 191 |
188 190
|
eqtr2d |
|- ( ph -> A = ( ( O ` ( var1 ` K ) ) ` A ) ) |
| 192 |
181 186 191
|
rspcedvdw |
|- ( ph -> E. p e. U A = ( ( O ` p ) ` A ) ) |
| 193 |
11 192 7
|
elrnmptd |
|- ( ph -> A e. ran G ) |
| 194 |
193
|
snssd |
|- ( ph -> { A } C_ ran G ) |
| 195 |
97 194
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ran G ) |
| 196 |
20 45 178 195
|
fldgenssp |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ran G ) |
| 197 |
44 196
|
eqssd |
|- ( ph -> ran G = ( E fldGen ( F u. { A } ) ) ) |
| 198 |
2 20
|
ressbas2 |
|- ( ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) -> ( E fldGen ( F u. { A } ) ) = ( Base ` L ) ) |
| 199 |
115 198
|
syl |
|- ( ph -> ( E fldGen ( F u. { A } ) ) = ( Base ` L ) ) |
| 200 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( subringAlg ` L ) ` F ) ) |
| 201 |
20 45 56
|
fldgenssid |
|- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) |
| 202 |
201
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) |
| 203 |
202 199
|
sseqtrd |
|- ( ph -> F C_ ( Base ` L ) ) |
| 204 |
200 203
|
srabase |
|- ( ph -> ( Base ` L ) = ( Base ` ( ( subringAlg ` L ) ` F ) ) ) |
| 205 |
197 199 204
|
3eqtrd |
|- ( ph -> ran G = ( Base ` ( ( subringAlg ` L ) ` F ) ) ) |
| 206 |
|
imaeq2 |
|- ( q = p -> ( G " q ) = ( G " p ) ) |
| 207 |
206
|
unieqd |
|- ( q = p -> U. ( G " q ) = U. ( G " p ) ) |
| 208 |
207
|
cbvmptv |
|- ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) = ( p e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " p ) ) |
| 209 |
27 28 29 30 205 208
|
lmhmqusker |
|- ( ph -> ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) e. ( ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) LMIso ( ( subringAlg ` L ) ` F ) ) ) |
| 210 |
|
eqidd |
|- ( ph -> ( 0g ` L ) = ( 0g ` L ) ) |
| 211 |
200 210 203
|
sralmod0 |
|- ( ph -> ( 0g ` L ) = ( 0g ` ( ( subringAlg ` L ) ` F ) ) ) |
| 212 |
211
|
sneqd |
|- ( ph -> { ( 0g ` L ) } = { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) |
| 213 |
212
|
imaeq2d |
|- ( ph -> ( `' G " { ( 0g ` L ) } ) = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) |
| 214 |
13 213
|
eqtrid |
|- ( ph -> Z = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) |
| 215 |
214
|
oveq2d |
|- ( ph -> ( P ~QG Z ) = ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) |
| 216 |
215
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG Z ) ) = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |
| 217 |
14 216
|
eqtrid |
|- ( ph -> Q = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |
| 218 |
217
|
fveq2d |
|- ( ph -> ( Base ` Q ) = ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) ) |
| 219 |
218
|
mpteq1d |
|- ( ph -> ( p e. ( Base ` Q ) |-> U. ( G " p ) ) = ( p e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " p ) ) ) |
| 220 |
219 15 208
|
3eqtr4g |
|- ( ph -> J = ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) ) |
| 221 |
217
|
oveq1d |
|- ( ph -> ( Q LMIso ( ( subringAlg ` L ) ` F ) ) = ( ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) LMIso ( ( subringAlg ` L ) ` F ) ) ) |
| 222 |
209 220 221
|
3eltr4d |
|- ( ph -> J e. ( Q LMIso ( ( subringAlg ` L ) ` F ) ) ) |
| 223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
|- ( ph -> Q e. LVec ) |
| 224 |
222 223
|
lmimdim |
|- ( ph -> ( dim ` Q ) = ( dim ` ( ( subringAlg ` L ) ` F ) ) ) |
| 225 |
20 5 56
|
fldgenfld |
|- ( ph -> ( E |`s ( E fldGen ( F u. { A } ) ) ) e. Field ) |
| 226 |
2 225
|
eqeltrid |
|- ( ph -> L e. Field ) |
| 227 |
1 2 3 4 5 6 7
|
algextdeglem1 |
|- ( ph -> ( L |`s F ) = K ) |
| 228 |
24
|
oveq2d |
|- ( ph -> ( L |`s F ) = ( L |`s ( Base ` K ) ) ) |
| 229 |
227 228
|
eqtr3d |
|- ( ph -> K = ( L |`s ( Base ` K ) ) ) |
| 230 |
2
|
subsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( F e. ( SubRing ` L ) <-> ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) ) |
| 231 |
230
|
biimpar |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) -> F e. ( SubRing ` L ) ) |
| 232 |
60 18 202 231
|
syl12anc |
|- ( ph -> F e. ( SubRing ` L ) ) |
| 233 |
24 232
|
eqeltrrd |
|- ( ph -> ( Base ` K ) e. ( SubRing ` L ) ) |
| 234 |
|
brfldext |
|- ( ( L e. Field /\ K e. Field ) -> ( L /FldExt K <-> ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) ) |
| 235 |
234
|
biimpar |
|- ( ( ( L e. Field /\ K e. Field ) /\ ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) -> L /FldExt K ) |
| 236 |
226 156 229 233 235
|
syl22anc |
|- ( ph -> L /FldExt K ) |
| 237 |
|
extdgval |
|- ( L /FldExt K -> ( L [:] K ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
| 238 |
236 237
|
syl |
|- ( ph -> ( L [:] K ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
| 239 |
26 224 238
|
3eqtr4d |
|- ( ph -> ( dim ` Q ) = ( L [:] K ) ) |