Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
17 |
6 16
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
18 |
17
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
19 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
20 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
21 |
20
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
22 |
18 19 21
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
23 |
1 20
|
ressbas2 |
|- ( F C_ ( Base ` E ) -> F = ( Base ` K ) ) |
24 |
22 23
|
syl |
|- ( ph -> F = ( Base ` K ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( subringAlg ` L ) ` ( Base ` K ) ) ) |
26 |
25
|
fveq2d |
|- ( ph -> ( dim ` ( ( subringAlg ` L ) ` F ) ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
27 |
|
eqid |
|- ( 0g ` ( ( subringAlg ` L ) ` F ) ) = ( 0g ` ( ( subringAlg ` L ) ` F ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem2 |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` L ) ` F ) ) ) |
29 |
|
eqid |
|- ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) |
30 |
|
eqid |
|- ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) |
31 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
32 |
9 31
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
33 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> E e. Field ) |
34 |
6
|
adantr |
|- ( ( ph /\ p e. U ) -> F e. ( SubDRing ` E ) ) |
35 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
36 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
37 |
8 1 20 35 36 18
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
38 |
37 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ p e. U ) -> A e. ( Base ` E ) ) |
40 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
41 |
20 8 32 10 33 34 39 40
|
evls1fldgencl |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
42 |
41
|
ralrimiva |
|- ( ph -> A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
43 |
11
|
rnmptss |
|- ( A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
44 |
42 43
|
syl |
|- ( ph -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
45 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
46 |
8 32 20 10 36 18 38 11
|
evls1maprhm |
|- ( ph -> G e. ( P RingHom E ) ) |
47 |
|
rnrhmsubrg |
|- ( G e. ( P RingHom E ) -> ran G e. ( SubRing ` E ) ) |
48 |
46 47
|
syl |
|- ( ph -> ran G e. ( SubRing ` E ) ) |
49 |
2
|
oveq1i |
|- ( L |`s ran G ) = ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) |
50 |
|
ovex |
|- ( E fldGen ( F u. { A } ) ) e. _V |
51 |
|
ressabs |
|- ( ( ( E fldGen ( F u. { A } ) ) e. _V /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) = ( E |`s ran G ) ) |
52 |
50 44 51
|
sylancr |
|- ( ph -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s ran G ) = ( E |`s ran G ) ) |
53 |
49 52
|
eqtrid |
|- ( ph -> ( L |`s ran G ) = ( E |`s ran G ) ) |
54 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
55 |
38
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
56 |
22 55
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
57 |
20 45 56
|
fldgensdrg |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) ) |
58 |
|
issdrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
59 |
57 58
|
sylib |
|- ( ph -> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
60 |
59
|
simp2d |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
61 |
2
|
resrhm2b |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( G e. ( P RingHom E ) <-> G e. ( P RingHom L ) ) ) |
62 |
61
|
biimpa |
|- ( ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) /\ G e. ( P RingHom E ) ) -> G e. ( P RingHom L ) ) |
63 |
60 44 46 62
|
syl21anc |
|- ( ph -> G e. ( P RingHom L ) ) |
64 |
|
rhmghm |
|- ( G e. ( P RingHom L ) -> G e. ( P GrpHom L ) ) |
65 |
63 64
|
syl |
|- ( ph -> G e. ( P GrpHom L ) ) |
66 |
54 65 13 14 15 10 12
|
ghmquskerco |
|- ( ph -> G = ( J o. N ) ) |
67 |
66
|
rneqd |
|- ( ph -> ran G = ran ( J o. N ) ) |
68 |
14
|
a1i |
|- ( ph -> Q = ( P /s ( P ~QG Z ) ) ) |
69 |
10
|
a1i |
|- ( ph -> U = ( Base ` P ) ) |
70 |
|
ovexd |
|- ( ph -> ( P ~QG Z ) e. _V ) |
71 |
17
|
simp3d |
|- ( ph -> ( E |`s F ) e. DivRing ) |
72 |
32 71
|
ply1lvec |
|- ( ph -> P e. LVec ) |
73 |
68 69 70 72
|
qusbas |
|- ( ph -> ( U /. ( P ~QG Z ) ) = ( Base ` Q ) ) |
74 |
|
eqid |
|- ( U /. ( P ~QG Z ) ) = ( U /. ( P ~QG Z ) ) |
75 |
54
|
ghmker |
|- ( G e. ( P GrpHom L ) -> ( `' G " { ( 0g ` L ) } ) e. ( NrmSGrp ` P ) ) |
76 |
65 75
|
syl |
|- ( ph -> ( `' G " { ( 0g ` L ) } ) e. ( NrmSGrp ` P ) ) |
77 |
13 76
|
eqeltrid |
|- ( ph -> Z e. ( NrmSGrp ` P ) ) |
78 |
10 74 12 77
|
qusrn |
|- ( ph -> ran N = ( U /. ( P ~QG Z ) ) ) |
79 |
|
eqid |
|- ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) |
80 |
8 32 20 10 36 18 38 11 79
|
evls1maplmhm |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) |
81 |
80
|
elexd |
|- ( ph -> G e. _V ) |
82 |
81
|
adantr |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> G e. _V ) |
83 |
82
|
imaexd |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> ( G " p ) e. _V ) |
84 |
83
|
uniexd |
|- ( ( ph /\ p e. ( Base ` Q ) ) -> U. ( G " p ) e. _V ) |
85 |
15 84
|
dmmptd |
|- ( ph -> dom J = ( Base ` Q ) ) |
86 |
73 78 85
|
3eqtr4rd |
|- ( ph -> dom J = ran N ) |
87 |
|
rncoeq |
|- ( dom J = ran N -> ran ( J o. N ) = ran J ) |
88 |
86 87
|
syl |
|- ( ph -> ran ( J o. N ) = ran J ) |
89 |
67 88
|
eqtrd |
|- ( ph -> ran G = ran J ) |
90 |
89
|
oveq2d |
|- ( ph -> ( L |`s ran G ) = ( L |`s ran J ) ) |
91 |
|
eqid |
|- ( L |`s ran J ) = ( L |`s ran J ) |
92 |
1
|
subrgcrng |
|- ( ( E e. CRing /\ F e. ( SubRing ` E ) ) -> K e. CRing ) |
93 |
36 18 92
|
syl2anc |
|- ( ph -> K e. CRing ) |
94 |
9
|
ply1crng |
|- ( K e. CRing -> P e. CRing ) |
95 |
93 94
|
syl |
|- ( ph -> P e. CRing ) |
96 |
54 63 13 14 15 95
|
rhmquskerlem |
|- ( ph -> J e. ( Q RingHom L ) ) |
97 |
8 32 20 10 36 18 38 11
|
evls1maprnss |
|- ( ph -> F C_ ran G ) |
98 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
99 |
1 98
|
subrg1 |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) = ( 1r ` K ) ) |
100 |
18 99
|
syl |
|- ( ph -> ( 1r ` E ) = ( 1r ` K ) ) |
101 |
98
|
subrg1cl |
|- ( F e. ( SubRing ` E ) -> ( 1r ` E ) e. F ) |
102 |
18 101
|
syl |
|- ( ph -> ( 1r ` E ) e. F ) |
103 |
100 102
|
eqeltrrd |
|- ( ph -> ( 1r ` K ) e. F ) |
104 |
97 103
|
sseldd |
|- ( ph -> ( 1r ` K ) e. ran G ) |
105 |
|
drngnzr |
|- ( E e. DivRing -> E e. NzRing ) |
106 |
98 35
|
nzrnz |
|- ( E e. NzRing -> ( 1r ` E ) =/= ( 0g ` E ) ) |
107 |
45 105 106
|
3syl |
|- ( ph -> ( 1r ` E ) =/= ( 0g ` E ) ) |
108 |
36
|
crnggrpd |
|- ( ph -> E e. Grp ) |
109 |
108
|
grpmndd |
|- ( ph -> E e. Mnd ) |
110 |
|
sdrgsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
111 |
|
subrgsubg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) ) |
112 |
57 110 111
|
3syl |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) ) |
113 |
35
|
subg0cl |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubGrp ` E ) -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
114 |
112 113
|
syl |
|- ( ph -> ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) ) |
115 |
20 45 56
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) |
116 |
2 20 35
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. ( E fldGen ( F u. { A } ) ) /\ ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) -> ( 0g ` E ) = ( 0g ` L ) ) |
117 |
109 114 115 116
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` L ) ) |
118 |
107 100 117
|
3netr3d |
|- ( ph -> ( 1r ` K ) =/= ( 0g ` L ) ) |
119 |
|
nelsn |
|- ( ( 1r ` K ) =/= ( 0g ` L ) -> -. ( 1r ` K ) e. { ( 0g ` L ) } ) |
120 |
118 119
|
syl |
|- ( ph -> -. ( 1r ` K ) e. { ( 0g ` L ) } ) |
121 |
|
nelne1 |
|- ( ( ( 1r ` K ) e. ran G /\ -. ( 1r ` K ) e. { ( 0g ` L ) } ) -> ran G =/= { ( 0g ` L ) } ) |
122 |
104 120 121
|
syl2anc |
|- ( ph -> ran G =/= { ( 0g ` L ) } ) |
123 |
89 122
|
eqnetrrd |
|- ( ph -> ran J =/= { ( 0g ` L ) } ) |
124 |
|
eqid |
|- ( oppR ` P ) = ( oppR ` P ) |
125 |
1
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> K e. DivRing ) |
126 |
|
drngnzr |
|- ( K e. DivRing -> K e. NzRing ) |
127 |
6 125 126
|
3syl |
|- ( ph -> K e. NzRing ) |
128 |
9
|
ply1nz |
|- ( K e. NzRing -> P e. NzRing ) |
129 |
127 128
|
syl |
|- ( ph -> P e. NzRing ) |
130 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } |
131 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
132 |
1
|
fveq2i |
|- ( idlGen1p ` K ) = ( idlGen1p ` ( E |`s F ) ) |
133 |
8 32 20 5 6 38 35 130 131 132
|
ply1annig1p |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( ( RSpan ` P ) ` { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
134 |
117
|
sneqd |
|- ( ph -> { ( 0g ` E ) } = { ( 0g ` L ) } ) |
135 |
134
|
imaeq2d |
|- ( ph -> ( `' G " { ( 0g ` E ) } ) = ( `' G " { ( 0g ` L ) } ) ) |
136 |
13 135
|
eqtr4id |
|- ( ph -> Z = ( `' G " { ( 0g ` E ) } ) ) |
137 |
10
|
mpteq1i |
|- ( p e. U |-> ( ( O ` p ) ` A ) ) = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
138 |
11 137
|
eqtri |
|- G = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
139 |
8 32 20 36 18 38 35 130 138
|
ply1annidllem |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = ( `' G " { ( 0g ` E ) } ) ) |
140 |
136 139
|
eqtr4d |
|- ( ph -> Z = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
141 |
|
eqid |
|- ( E minPoly F ) = ( E minPoly F ) |
142 |
8 32 20 5 6 38 35 130 131 132 141
|
minplyval |
|- ( ph -> ( ( E minPoly F ) ` A ) = ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
143 |
142
|
sneqd |
|- ( ph -> { ( ( E minPoly F ) ` A ) } = { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) |
144 |
143
|
fveq2d |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) = ( ( RSpan ` P ) ` { ( ( idlGen1p ` K ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) } ) ) |
145 |
133 140 144
|
3eqtr4d |
|- ( ph -> Z = ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) ) |
146 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
147 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
148 |
147 5 6 141 7
|
irngnminplynz |
|- ( ph -> ( ( E minPoly F ) ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) |
149 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
150 |
149 1 9 10 18 147
|
ressply10g |
|- ( ph -> ( 0g ` ( Poly1 ` E ) ) = ( 0g ` P ) ) |
151 |
148 150
|
neeqtrd |
|- ( ph -> ( ( E minPoly F ) ` A ) =/= ( 0g ` P ) ) |
152 |
8 32 20 5 6 38 141 146 151
|
minplyirred |
|- ( ph -> ( ( E minPoly F ) ` A ) e. ( Irred ` P ) ) |
153 |
|
eqid |
|- ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) = ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) |
154 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
155 |
5 6 154
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
156 |
1 155
|
eqeltrid |
|- ( ph -> K e. Field ) |
157 |
9
|
ply1pid |
|- ( K e. Field -> P e. PID ) |
158 |
156 157
|
syl |
|- ( ph -> P e. PID ) |
159 |
8 32 20 5 6 38 35 130 131 132 141
|
minplycl |
|- ( ph -> ( ( E minPoly F ) ` A ) e. ( Base ` P ) ) |
160 |
159 10
|
eleqtrrdi |
|- ( ph -> ( ( E minPoly F ) ` A ) e. U ) |
161 |
95
|
crngringd |
|- ( ph -> P e. Ring ) |
162 |
160
|
snssd |
|- ( ph -> { ( ( E minPoly F ) ` A ) } C_ U ) |
163 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
164 |
131 10 163
|
rspcl |
|- ( ( P e. Ring /\ { ( ( E minPoly F ) ` A ) } C_ U ) -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( LIdeal ` P ) ) |
165 |
161 162 164
|
syl2anc |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( LIdeal ` P ) ) |
166 |
10 131 146 153 158 160 151 165
|
mxidlirred |
|- ( ph -> ( ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( MaxIdeal ` P ) <-> ( ( E minPoly F ) ` A ) e. ( Irred ` P ) ) ) |
167 |
152 166
|
mpbird |
|- ( ph -> ( ( RSpan ` P ) ` { ( ( E minPoly F ) ` A ) } ) e. ( MaxIdeal ` P ) ) |
168 |
145 167
|
eqeltrd |
|- ( ph -> Z e. ( MaxIdeal ` P ) ) |
169 |
|
eqid |
|- ( MaxIdeal ` P ) = ( MaxIdeal ` P ) |
170 |
169 124
|
crngmxidl |
|- ( P e. CRing -> ( MaxIdeal ` P ) = ( MaxIdeal ` ( oppR ` P ) ) ) |
171 |
95 170
|
syl |
|- ( ph -> ( MaxIdeal ` P ) = ( MaxIdeal ` ( oppR ` P ) ) ) |
172 |
168 171
|
eleqtrd |
|- ( ph -> Z e. ( MaxIdeal ` ( oppR ` P ) ) ) |
173 |
124 14 129 168 172
|
qsdrngi |
|- ( ph -> Q e. DivRing ) |
174 |
91 54 96 123 173
|
rndrhmcl |
|- ( ph -> ( L |`s ran J ) e. DivRing ) |
175 |
90 174
|
eqeltrd |
|- ( ph -> ( L |`s ran G ) e. DivRing ) |
176 |
53 175
|
eqeltrrd |
|- ( ph -> ( E |`s ran G ) e. DivRing ) |
177 |
|
issdrg |
|- ( ran G e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ran G e. ( SubRing ` E ) /\ ( E |`s ran G ) e. DivRing ) ) |
178 |
45 48 176 177
|
syl3anbrc |
|- ( ph -> ran G e. ( SubDRing ` E ) ) |
179 |
|
fveq2 |
|- ( p = ( var1 ` K ) -> ( O ` p ) = ( O ` ( var1 ` K ) ) ) |
180 |
179
|
fveq1d |
|- ( p = ( var1 ` K ) -> ( ( O ` p ) ` A ) = ( ( O ` ( var1 ` K ) ) ` A ) ) |
181 |
180
|
eqeq2d |
|- ( p = ( var1 ` K ) -> ( A = ( ( O ` p ) ` A ) <-> A = ( ( O ` ( var1 ` K ) ) ` A ) ) ) |
182 |
1 71
|
eqeltrid |
|- ( ph -> K e. DivRing ) |
183 |
182
|
drngringd |
|- ( ph -> K e. Ring ) |
184 |
|
eqid |
|- ( var1 ` K ) = ( var1 ` K ) |
185 |
184 9 10
|
vr1cl |
|- ( K e. Ring -> ( var1 ` K ) e. U ) |
186 |
183 185
|
syl |
|- ( ph -> ( var1 ` K ) e. U ) |
187 |
8 184 1 20 36 18
|
evls1var |
|- ( ph -> ( O ` ( var1 ` K ) ) = ( _I |` ( Base ` E ) ) ) |
188 |
187
|
fveq1d |
|- ( ph -> ( ( O ` ( var1 ` K ) ) ` A ) = ( ( _I |` ( Base ` E ) ) ` A ) ) |
189 |
|
fvresi |
|- ( A e. ( Base ` E ) -> ( ( _I |` ( Base ` E ) ) ` A ) = A ) |
190 |
38 189
|
syl |
|- ( ph -> ( ( _I |` ( Base ` E ) ) ` A ) = A ) |
191 |
188 190
|
eqtr2d |
|- ( ph -> A = ( ( O ` ( var1 ` K ) ) ` A ) ) |
192 |
181 186 191
|
rspcedvdw |
|- ( ph -> E. p e. U A = ( ( O ` p ) ` A ) ) |
193 |
11 192 7
|
elrnmptd |
|- ( ph -> A e. ran G ) |
194 |
193
|
snssd |
|- ( ph -> { A } C_ ran G ) |
195 |
97 194
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ran G ) |
196 |
20 45 178 195
|
fldgenssp |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ran G ) |
197 |
44 196
|
eqssd |
|- ( ph -> ran G = ( E fldGen ( F u. { A } ) ) ) |
198 |
2 20
|
ressbas2 |
|- ( ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) -> ( E fldGen ( F u. { A } ) ) = ( Base ` L ) ) |
199 |
115 198
|
syl |
|- ( ph -> ( E fldGen ( F u. { A } ) ) = ( Base ` L ) ) |
200 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( subringAlg ` L ) ` F ) ) |
201 |
20 45 56
|
fldgenssid |
|- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) |
202 |
201
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) |
203 |
202 199
|
sseqtrd |
|- ( ph -> F C_ ( Base ` L ) ) |
204 |
200 203
|
srabase |
|- ( ph -> ( Base ` L ) = ( Base ` ( ( subringAlg ` L ) ` F ) ) ) |
205 |
197 199 204
|
3eqtrd |
|- ( ph -> ran G = ( Base ` ( ( subringAlg ` L ) ` F ) ) ) |
206 |
|
imaeq2 |
|- ( q = p -> ( G " q ) = ( G " p ) ) |
207 |
206
|
unieqd |
|- ( q = p -> U. ( G " q ) = U. ( G " p ) ) |
208 |
207
|
cbvmptv |
|- ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) = ( p e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " p ) ) |
209 |
27 28 29 30 205 208
|
lmhmqusker |
|- ( ph -> ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) e. ( ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) LMIso ( ( subringAlg ` L ) ` F ) ) ) |
210 |
|
eqidd |
|- ( ph -> ( 0g ` L ) = ( 0g ` L ) ) |
211 |
200 210 203
|
sralmod0 |
|- ( ph -> ( 0g ` L ) = ( 0g ` ( ( subringAlg ` L ) ` F ) ) ) |
212 |
211
|
sneqd |
|- ( ph -> { ( 0g ` L ) } = { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) |
213 |
212
|
imaeq2d |
|- ( ph -> ( `' G " { ( 0g ` L ) } ) = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) |
214 |
13 213
|
eqtrid |
|- ( ph -> Z = ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) |
215 |
214
|
oveq2d |
|- ( ph -> ( P ~QG Z ) = ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) |
216 |
215
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG Z ) ) = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |
217 |
14 216
|
eqtrid |
|- ( ph -> Q = ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |
218 |
217
|
fveq2d |
|- ( ph -> ( Base ` Q ) = ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) ) |
219 |
218
|
mpteq1d |
|- ( ph -> ( p e. ( Base ` Q ) |-> U. ( G " p ) ) = ( p e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " p ) ) ) |
220 |
219 15 208
|
3eqtr4g |
|- ( ph -> J = ( q e. ( Base ` ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) ) |-> U. ( G " q ) ) ) |
221 |
217
|
oveq1d |
|- ( ph -> ( Q LMIso ( ( subringAlg ` L ) ` F ) ) = ( ( P /s ( P ~QG ( `' G " { ( 0g ` ( ( subringAlg ` L ) ` F ) ) } ) ) ) LMIso ( ( subringAlg ` L ) ` F ) ) ) |
222 |
209 220 221
|
3eltr4d |
|- ( ph -> J e. ( Q LMIso ( ( subringAlg ` L ) ` F ) ) ) |
223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
|- ( ph -> Q e. LVec ) |
224 |
222 223
|
lmimdim |
|- ( ph -> ( dim ` Q ) = ( dim ` ( ( subringAlg ` L ) ` F ) ) ) |
225 |
20 5 56
|
fldgenfld |
|- ( ph -> ( E |`s ( E fldGen ( F u. { A } ) ) ) e. Field ) |
226 |
2 225
|
eqeltrid |
|- ( ph -> L e. Field ) |
227 |
1 2 3 4 5 6 7
|
algextdeglem1 |
|- ( ph -> ( L |`s F ) = K ) |
228 |
24
|
oveq2d |
|- ( ph -> ( L |`s F ) = ( L |`s ( Base ` K ) ) ) |
229 |
227 228
|
eqtr3d |
|- ( ph -> K = ( L |`s ( Base ` K ) ) ) |
230 |
2
|
subsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( F e. ( SubRing ` L ) <-> ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) ) |
231 |
230
|
biimpar |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) -> F e. ( SubRing ` L ) ) |
232 |
60 18 202 231
|
syl12anc |
|- ( ph -> F e. ( SubRing ` L ) ) |
233 |
24 232
|
eqeltrrd |
|- ( ph -> ( Base ` K ) e. ( SubRing ` L ) ) |
234 |
|
brfldext |
|- ( ( L e. Field /\ K e. Field ) -> ( L /FldExt K <-> ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) ) |
235 |
234
|
biimpar |
|- ( ( ( L e. Field /\ K e. Field ) /\ ( K = ( L |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` L ) ) ) -> L /FldExt K ) |
236 |
226 156 229 233 235
|
syl22anc |
|- ( ph -> L /FldExt K ) |
237 |
|
extdgval |
|- ( L /FldExt K -> ( L [:] K ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
238 |
236 237
|
syl |
|- ( ph -> ( L [:] K ) = ( dim ` ( ( subringAlg ` L ) ` ( Base ` K ) ) ) ) |
239 |
26 224 238
|
3eqtr4d |
|- ( ph -> ( dim ` Q ) = ( L [:] K ) ) |