Step |
Hyp |
Ref |
Expression |
1 |
|
lmimdim.1 |
|- ( ph -> F e. ( S LMIso T ) ) |
2 |
|
lmimdim.2 |
|- ( ph -> S e. LVec ) |
3 |
|
eqid |
|- ( LBasis ` S ) = ( LBasis ` S ) |
4 |
3
|
lbsex |
|- ( S e. LVec -> ( LBasis ` S ) =/= (/) ) |
5 |
2 4
|
syl |
|- ( ph -> ( LBasis ` S ) =/= (/) ) |
6 |
|
n0 |
|- ( ( LBasis ` S ) =/= (/) <-> E. b b e. ( LBasis ` S ) ) |
7 |
5 6
|
sylib |
|- ( ph -> E. b b e. ( LBasis ` S ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> F e. ( S LMIso T ) ) |
9 |
8
|
resexd |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( F |` b ) e. _V ) |
10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
11 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
12 |
10 11
|
lmimf1o |
|- ( F e. ( S LMIso T ) -> F : ( Base ` S ) -1-1-onto-> ( Base ` T ) ) |
13 |
|
f1of1 |
|- ( F : ( Base ` S ) -1-1-onto-> ( Base ` T ) -> F : ( Base ` S ) -1-1-> ( Base ` T ) ) |
14 |
8 12 13
|
3syl |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> F : ( Base ` S ) -1-1-> ( Base ` T ) ) |
15 |
10 3
|
lbsss |
|- ( b e. ( LBasis ` S ) -> b C_ ( Base ` S ) ) |
16 |
15
|
adantl |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> b C_ ( Base ` S ) ) |
17 |
|
f1ssres |
|- ( ( F : ( Base ` S ) -1-1-> ( Base ` T ) /\ b C_ ( Base ` S ) ) -> ( F |` b ) : b -1-1-> ( Base ` T ) ) |
18 |
14 16 17
|
syl2anc |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( F |` b ) : b -1-1-> ( Base ` T ) ) |
19 |
|
hashf1dmrn |
|- ( ( ( F |` b ) e. _V /\ ( F |` b ) : b -1-1-> ( Base ` T ) ) -> ( # ` b ) = ( # ` ran ( F |` b ) ) ) |
20 |
9 18 19
|
syl2anc |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( # ` b ) = ( # ` ran ( F |` b ) ) ) |
21 |
|
df-ima |
|- ( F " b ) = ran ( F |` b ) |
22 |
21
|
fveq2i |
|- ( # ` ( F " b ) ) = ( # ` ran ( F |` b ) ) |
23 |
20 22
|
eqtr4di |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( # ` b ) = ( # ` ( F " b ) ) ) |
24 |
3
|
dimval |
|- ( ( S e. LVec /\ b e. ( LBasis ` S ) ) -> ( dim ` S ) = ( # ` b ) ) |
25 |
2 24
|
sylan |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( dim ` S ) = ( # ` b ) ) |
26 |
|
lmimlmhm |
|- ( F e. ( S LMIso T ) -> F e. ( S LMHom T ) ) |
27 |
1 26
|
syl |
|- ( ph -> F e. ( S LMHom T ) ) |
28 |
|
lmhmlvec |
|- ( F e. ( S LMHom T ) -> ( S e. LVec <-> T e. LVec ) ) |
29 |
28
|
biimpa |
|- ( ( F e. ( S LMHom T ) /\ S e. LVec ) -> T e. LVec ) |
30 |
27 2 29
|
syl2anc |
|- ( ph -> T e. LVec ) |
31 |
30
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> T e. LVec ) |
32 |
|
eqid |
|- ( LBasis ` T ) = ( LBasis ` T ) |
33 |
3 32
|
lmimlbs |
|- ( ( F e. ( S LMIso T ) /\ b e. ( LBasis ` S ) ) -> ( F " b ) e. ( LBasis ` T ) ) |
34 |
1 33
|
sylan |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( F " b ) e. ( LBasis ` T ) ) |
35 |
32
|
dimval |
|- ( ( T e. LVec /\ ( F " b ) e. ( LBasis ` T ) ) -> ( dim ` T ) = ( # ` ( F " b ) ) ) |
36 |
31 34 35
|
syl2anc |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( dim ` T ) = ( # ` ( F " b ) ) ) |
37 |
23 25 36
|
3eqtr4d |
|- ( ( ph /\ b e. ( LBasis ` S ) ) -> ( dim ` S ) = ( dim ` T ) ) |
38 |
7 37
|
exlimddv |
|- ( ph -> ( dim ` S ) = ( dim ` T ) ) |