Metamath Proof Explorer


Theorem lmimdim

Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses lmimdim.1 φFSLMIsoT
lmimdim.2 φSLVec
Assertion lmimdim φdimS=dimT

Proof

Step Hyp Ref Expression
1 lmimdim.1 φFSLMIsoT
2 lmimdim.2 φSLVec
3 eqid LBasisS=LBasisS
4 3 lbsex SLVecLBasisS
5 2 4 syl φLBasisS
6 n0 LBasisSbbLBasisS
7 5 6 sylib φbbLBasisS
8 1 adantr φbLBasisSFSLMIsoT
9 8 resexd φbLBasisSFbV
10 eqid BaseS=BaseS
11 eqid BaseT=BaseT
12 10 11 lmimf1o FSLMIsoTF:BaseS1-1 ontoBaseT
13 f1of1 F:BaseS1-1 ontoBaseTF:BaseS1-1BaseT
14 8 12 13 3syl φbLBasisSF:BaseS1-1BaseT
15 10 3 lbsss bLBasisSbBaseS
16 15 adantl φbLBasisSbBaseS
17 f1ssres F:BaseS1-1BaseTbBaseSFb:b1-1BaseT
18 14 16 17 syl2anc φbLBasisSFb:b1-1BaseT
19 hashf1dmrn FbVFb:b1-1BaseTb=ranFb
20 9 18 19 syl2anc φbLBasisSb=ranFb
21 df-ima Fb=ranFb
22 21 fveq2i Fb=ranFb
23 20 22 eqtr4di φbLBasisSb=Fb
24 3 dimval SLVecbLBasisSdimS=b
25 2 24 sylan φbLBasisSdimS=b
26 lmimlmhm FSLMIsoTFSLMHomT
27 1 26 syl φFSLMHomT
28 lmhmlvec FSLMHomTSLVecTLVec
29 28 biimpa FSLMHomTSLVecTLVec
30 27 2 29 syl2anc φTLVec
31 30 adantr φbLBasisSTLVec
32 eqid LBasisT=LBasisT
33 3 32 lmimlbs FSLMIsoTbLBasisSFbLBasisT
34 1 33 sylan φbLBasisSFbLBasisT
35 32 dimval TLVecFbLBasisTdimT=Fb
36 31 34 35 syl2anc φbLBasisSdimT=Fb
37 23 25 36 3eqtr4d φbLBasisSdimS=dimT
38 7 37 exlimddv φdimS=dimT