Metamath Proof Explorer


Theorem lmimlmhm

Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion lmimlmhm FRLMIsoSFRLMHomS

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid BaseS=BaseS
3 1 2 islmim FRLMIsoSFRLMHomSF:BaseR1-1 ontoBaseS
4 3 simplbi FRLMIsoSFRLMHomS