Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmimgim |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimlmhm | ||
| 2 | lmghm | ||
| 3 | 1 2 | syl | |
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | 4 5 | lmimf1o | |
| 7 | 4 5 | isgim | |
| 8 | 3 6 7 | sylanbrc |