Metamath Proof Explorer
Description: An isomorphism of left modules is a bijection. (Contributed by Stefan
O'Rear, 21-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
islmim.b |
|
|
|
islmim.c |
|
|
Assertion |
lmimf1o |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmim.b |
|
| 2 |
|
islmim.c |
|
| 3 |
1 2
|
islmim |
|
| 4 |
3
|
simprbi |
|