Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmim.b | |- B = ( Base ` R ) |
|
| islmim.c | |- C = ( Base ` S ) |
||
| Assertion | lmimf1o | |- ( F e. ( R LMIso S ) -> F : B -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmim.b | |- B = ( Base ` R ) |
|
| 2 | islmim.c | |- C = ( Base ` S ) |
|
| 3 | 1 2 | islmim | |- ( F e. ( R LMIso S ) <-> ( F e. ( R LMHom S ) /\ F : B -1-1-onto-> C ) ) |
| 4 | 3 | simprbi | |- ( F e. ( R LMIso S ) -> F : B -1-1-onto-> C ) |