Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmimlmhm | |- ( F e. ( R LMIso S ) -> F e. ( R LMHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | 1 2 | islmim | |- ( F e. ( R LMIso S ) <-> ( F e. ( R LMHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 4 | 3 | simplbi | |- ( F e. ( R LMIso S ) -> F e. ( R LMHom S ) ) |