| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmimlmhm |
|- ( F e. ( R LMIso S ) -> F e. ( R LMHom S ) ) |
| 2 |
|
lmghm |
|- ( F e. ( R LMHom S ) -> F e. ( R GrpHom S ) ) |
| 3 |
1 2
|
syl |
|- ( F e. ( R LMIso S ) -> F e. ( R GrpHom S ) ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 6 |
4 5
|
lmimf1o |
|- ( F e. ( R LMIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 7 |
4 5
|
isgim |
|- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) ) |
| 8 |
3 6 7
|
sylanbrc |
|- ( F e. ( R LMIso S ) -> F e. ( R GrpIso S ) ) |