| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmimlmhm |
⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ) |
| 2 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 6 |
4 5
|
lmimf1o |
⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 7 |
4 5
|
isgim |
⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 8 |
3 6 7
|
sylanbrc |
⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ) |