| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmimdim.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ) |
| 2 |
|
lmimdim.2 |
⊢ ( 𝜑 → 𝑆 ∈ LVec ) |
| 3 |
|
eqid |
⊢ ( LBasis ‘ 𝑆 ) = ( LBasis ‘ 𝑆 ) |
| 4 |
3
|
lbsex |
⊢ ( 𝑆 ∈ LVec → ( LBasis ‘ 𝑆 ) ≠ ∅ ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ 𝑆 ) ≠ ∅ ) |
| 6 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑆 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) |
| 8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ) |
| 9 |
8
|
resexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑏 ) ∈ V ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 12 |
10 11
|
lmimf1o |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
| 13 |
|
f1of1 |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
| 14 |
8 12 13
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
| 15 |
10 3
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑆 ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) ) |
| 17 |
|
f1ssres |
⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –1-1→ ( Base ‘ 𝑇 ) ) |
| 18 |
14 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –1-1→ ( Base ‘ 𝑇 ) ) |
| 19 |
|
hashf1dmrn |
⊢ ( ( ( 𝐹 ↾ 𝑏 ) ∈ V ∧ ( 𝐹 ↾ 𝑏 ) : 𝑏 –1-1→ ( Base ‘ 𝑇 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ran ( 𝐹 ↾ 𝑏 ) ) ) |
| 20 |
9 18 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ran ( 𝐹 ↾ 𝑏 ) ) ) |
| 21 |
|
df-ima |
⊢ ( 𝐹 “ 𝑏 ) = ran ( 𝐹 ↾ 𝑏 ) |
| 22 |
21
|
fveq2i |
⊢ ( ♯ ‘ ( 𝐹 “ 𝑏 ) ) = ( ♯ ‘ ran ( 𝐹 ↾ 𝑏 ) ) |
| 23 |
20 22
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ( 𝐹 “ 𝑏 ) ) ) |
| 24 |
3
|
dimval |
⊢ ( ( 𝑆 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( ♯ ‘ 𝑏 ) ) |
| 25 |
2 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( ♯ ‘ 𝑏 ) ) |
| 26 |
|
lmimlmhm |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 27 |
1 26
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 28 |
|
lmhmlvec |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |
| 29 |
28
|
biimpa |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑆 ∈ LVec ) → 𝑇 ∈ LVec ) |
| 30 |
27 2 29
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ LVec ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝑇 ∈ LVec ) |
| 32 |
|
eqid |
⊢ ( LBasis ‘ 𝑇 ) = ( LBasis ‘ 𝑇 ) |
| 33 |
3 32
|
lmimlbs |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹 “ 𝑏 ) ∈ ( LBasis ‘ 𝑇 ) ) |
| 34 |
1 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹 “ 𝑏 ) ∈ ( LBasis ‘ 𝑇 ) ) |
| 35 |
32
|
dimval |
⊢ ( ( 𝑇 ∈ LVec ∧ ( 𝐹 “ 𝑏 ) ∈ ( LBasis ‘ 𝑇 ) ) → ( dim ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑏 ) ) ) |
| 36 |
31 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑏 ) ) ) |
| 37 |
23 25 36
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) ) |
| 38 |
7 37
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) ) |