Metamath Proof Explorer


Theorem lmimdim

Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses lmimdim.1 ( 𝜑𝐹 ∈ ( 𝑆 LMIso 𝑇 ) )
lmimdim.2 ( 𝜑𝑆 ∈ LVec )
Assertion lmimdim ( 𝜑 → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) )

Proof

Step Hyp Ref Expression
1 lmimdim.1 ( 𝜑𝐹 ∈ ( 𝑆 LMIso 𝑇 ) )
2 lmimdim.2 ( 𝜑𝑆 ∈ LVec )
3 eqid ( LBasis ‘ 𝑆 ) = ( LBasis ‘ 𝑆 )
4 3 lbsex ( 𝑆 ∈ LVec → ( LBasis ‘ 𝑆 ) ≠ ∅ )
5 2 4 syl ( 𝜑 → ( LBasis ‘ 𝑆 ) ≠ ∅ )
6 n0 ( ( LBasis ‘ 𝑆 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑆 ) )
7 5 6 sylib ( 𝜑 → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑆 ) )
8 1 adantr ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) )
9 8 resexd ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹𝑏 ) ∈ V )
10 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
11 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
12 10 11 lmimf1o ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) )
13 f1of1 ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) )
14 8 12 13 3syl ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) )
15 10 3 lbsss ( 𝑏 ∈ ( LBasis ‘ 𝑆 ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) )
16 15 adantl ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) )
17 f1ssres ( ( 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹𝑏 ) : 𝑏1-1→ ( Base ‘ 𝑇 ) )
18 14 16 17 syl2anc ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹𝑏 ) : 𝑏1-1→ ( Base ‘ 𝑇 ) )
19 hashf1dmrn ( ( ( 𝐹𝑏 ) ∈ V ∧ ( 𝐹𝑏 ) : 𝑏1-1→ ( Base ‘ 𝑇 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ran ( 𝐹𝑏 ) ) )
20 9 18 19 syl2anc ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ran ( 𝐹𝑏 ) ) )
21 df-ima ( 𝐹𝑏 ) = ran ( 𝐹𝑏 )
22 21 fveq2i ( ♯ ‘ ( 𝐹𝑏 ) ) = ( ♯ ‘ ran ( 𝐹𝑏 ) )
23 20 22 eqtr4di ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ( 𝐹𝑏 ) ) )
24 3 dimval ( ( 𝑆 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( ♯ ‘ 𝑏 ) )
25 2 24 sylan ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( ♯ ‘ 𝑏 ) )
26 lmimlmhm ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
27 1 26 syl ( 𝜑𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
28 lmhmlvec ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) )
29 28 biimpa ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑆 ∈ LVec ) → 𝑇 ∈ LVec )
30 27 2 29 syl2anc ( 𝜑𝑇 ∈ LVec )
31 30 adantr ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → 𝑇 ∈ LVec )
32 eqid ( LBasis ‘ 𝑇 ) = ( LBasis ‘ 𝑇 )
33 3 32 lmimlbs ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹𝑏 ) ∈ ( LBasis ‘ 𝑇 ) )
34 1 33 sylan ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( 𝐹𝑏 ) ∈ ( LBasis ‘ 𝑇 ) )
35 32 dimval ( ( 𝑇 ∈ LVec ∧ ( 𝐹𝑏 ) ∈ ( LBasis ‘ 𝑇 ) ) → ( dim ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹𝑏 ) ) )
36 31 34 35 syl2anc ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹𝑏 ) ) )
37 23 25 36 3eqtr4d ( ( 𝜑𝑏 ∈ ( LBasis ‘ 𝑆 ) ) → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) )
38 7 37 exlimddv ( 𝜑 → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) )