| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmimlbs.j |
⊢ 𝐽 = ( LBasis ‘ 𝑆 ) |
| 2 |
|
lmimlbs.k |
⊢ 𝐾 = ( LBasis ‘ 𝑇 ) |
| 3 |
|
lmimlmhm |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 6 |
4 5
|
lmimf1o |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
| 7 |
|
f1of1 |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
| 9 |
1
|
lbslinds |
⊢ 𝐽 ⊆ ( LIndS ‘ 𝑆 ) |
| 10 |
9
|
sseli |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ∈ ( LIndS ‘ 𝑆 ) ) |
| 11 |
4 5
|
lindsmm2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ∧ 𝐵 ∈ ( LIndS ‘ 𝑆 ) ) → ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 12 |
3 8 10 11
|
syl2an3an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 13 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
| 14 |
4 1 13
|
lbssp |
⊢ ( 𝐵 ∈ 𝐽 → ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) = ( Base ‘ 𝑆 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) = ( Base ‘ 𝑆 ) ) |
| 16 |
15
|
imaeq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( 𝐹 “ ( Base ‘ 𝑆 ) ) ) |
| 17 |
4 1
|
lbsss |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 18 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
| 19 |
4 13 18
|
lmhmlsp |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) ) |
| 20 |
3 17 19
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
| 22 |
|
f1ofo |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –onto→ ( Base ‘ 𝑇 ) ) |
| 23 |
|
foima |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –onto→ ( Base ‘ 𝑇 ) → ( 𝐹 “ ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
| 25 |
16 20 24
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) = ( Base ‘ 𝑇 ) ) |
| 26 |
5 2 18
|
islbs4 |
⊢ ( ( 𝐹 “ 𝐵 ) ∈ 𝐾 ↔ ( ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ∧ ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) = ( Base ‘ 𝑇 ) ) ) |
| 27 |
12 25 26
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ 𝐵 ) ∈ 𝐾 ) |