Step |
Hyp |
Ref |
Expression |
1 |
|
lmimlbs.j |
⊢ 𝐽 = ( LBasis ‘ 𝑆 ) |
2 |
|
lmimlbs.k |
⊢ 𝐾 = ( LBasis ‘ 𝑇 ) |
3 |
|
lmimlmhm |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
6 |
4 5
|
lmimf1o |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
7 |
|
f1of1 |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ) |
9 |
1
|
lbslinds |
⊢ 𝐽 ⊆ ( LIndS ‘ 𝑆 ) |
10 |
9
|
sseli |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ∈ ( LIndS ‘ 𝑆 ) ) |
11 |
4 5
|
lindsmm2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : ( Base ‘ 𝑆 ) –1-1→ ( Base ‘ 𝑇 ) ∧ 𝐵 ∈ ( LIndS ‘ 𝑆 ) ) → ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ) |
12 |
3 8 10 11
|
syl2an3an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ) |
13 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
14 |
4 1 13
|
lbssp |
⊢ ( 𝐵 ∈ 𝐽 → ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) = ( Base ‘ 𝑆 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) = ( Base ‘ 𝑆 ) ) |
16 |
15
|
imaeq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( 𝐹 “ ( Base ‘ 𝑆 ) ) ) |
17 |
4 1
|
lbsss |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
19 |
4 13 18
|
lmhmlsp |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) ) |
20 |
3 17 19
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝐵 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) ) |
21 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
22 |
|
f1ofo |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) –onto→ ( Base ‘ 𝑇 ) ) |
23 |
|
foima |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) –onto→ ( Base ‘ 𝑇 ) → ( 𝐹 “ ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
24 |
21 22 23
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
25 |
16 20 24
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) = ( Base ‘ 𝑇 ) ) |
26 |
5 2 18
|
islbs4 |
⊢ ( ( 𝐹 “ 𝐵 ) ∈ 𝐾 ↔ ( ( 𝐹 “ 𝐵 ) ∈ ( LIndS ‘ 𝑇 ) ∧ ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝐵 ) ) = ( Base ‘ 𝑇 ) ) ) |
27 |
12 25 26
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ∧ 𝐵 ∈ 𝐽 ) → ( 𝐹 “ 𝐵 ) ∈ 𝐾 ) |