| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmicdim.1 |
⊢ ( 𝜑 → 𝑆 ≃𝑚 𝑇 ) |
| 2 |
|
lmicdim.2 |
⊢ ( 𝜑 → 𝑆 ∈ LVec ) |
| 3 |
|
brlmic |
⊢ ( 𝑆 ≃𝑚 𝑇 ↔ ( 𝑆 LMIso 𝑇 ) ≠ ∅ ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( 𝑆 LMIso 𝑇 ) ≠ ∅ ) |
| 5 |
|
n0 |
⊢ ( ( 𝑆 LMIso 𝑇 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) |
| 6 |
4 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) → 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) → 𝑆 ∈ LVec ) |
| 9 |
7 8
|
lmimdim |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑆 LMIso 𝑇 ) ) → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) ) |
| 10 |
6 9
|
exlimddv |
⊢ ( 𝜑 → ( dim ‘ 𝑆 ) = ( dim ‘ 𝑇 ) ) |