Step |
Hyp |
Ref |
Expression |
1 |
|
lmicdim.1 |
|- ( ph -> S ~=m T ) |
2 |
|
lmicdim.2 |
|- ( ph -> S e. LVec ) |
3 |
|
brlmic |
|- ( S ~=m T <-> ( S LMIso T ) =/= (/) ) |
4 |
1 3
|
sylib |
|- ( ph -> ( S LMIso T ) =/= (/) ) |
5 |
|
n0 |
|- ( ( S LMIso T ) =/= (/) <-> E. f f e. ( S LMIso T ) ) |
6 |
4 5
|
sylib |
|- ( ph -> E. f f e. ( S LMIso T ) ) |
7 |
|
simpr |
|- ( ( ph /\ f e. ( S LMIso T ) ) -> f e. ( S LMIso T ) ) |
8 |
2
|
adantr |
|- ( ( ph /\ f e. ( S LMIso T ) ) -> S e. LVec ) |
9 |
7 8
|
lmimdim |
|- ( ( ph /\ f e. ( S LMIso T ) ) -> ( dim ` S ) = ( dim ` T ) ) |
10 |
6 9
|
exlimddv |
|- ( ph -> ( dim ` S ) = ( dim ` T ) ) |