Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
minplyirred.1 |
|- M = ( E minPoly F ) |
8 |
|
minplyirred.2 |
|- Z = ( 0g ` P ) |
9 |
|
minplyirred.3 |
|- ( ph -> ( M ` A ) =/= Z ) |
10 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
11 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } = { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } |
12 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
13 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
14 |
1 2 3 4 5 6 10 11 12 13 7
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
15 |
1 2 3 4 5 6 10 11 12 13 7
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) ) |
16 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
17 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
18 |
17
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
19 |
5 18
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
20 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
21 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
22 |
5 21
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
23 |
1 2 3 20 22 6 10 11
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` P ) ) |
24 |
4
|
flddrngd |
|- ( ph -> E e. DivRing ) |
25 |
|
drngnzr |
|- ( E e. DivRing -> E e. NzRing ) |
26 |
24 25
|
syl |
|- ( ph -> E e. NzRing ) |
27 |
1 2 3 20 22 6 10 11 16 26
|
ply1annnr |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } =/= ( Base ` P ) ) |
28 |
2 13 16 19 23 27
|
ig1pnunit |
|- ( ph -> -. ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) e. ( Unit ` P ) ) |
29 |
15 28
|
eqneltrd |
|- ( ph -> -. ( M ` A ) e. ( Unit ` P ) ) |
30 |
|
fldidom |
|- ( E e. Field -> E e. IDomn ) |
31 |
4 30
|
syl |
|- ( ph -> E e. IDomn ) |
32 |
31
|
idomdomd |
|- ( ph -> E e. Domn ) |
33 |
32
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> E e. Domn ) |
34 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> E e. CRing ) |
35 |
22
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> F e. ( SubRing ` E ) ) |
36 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> A e. B ) |
37 |
|
simpllr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> f e. ( Base ` P ) ) |
38 |
1 2 3 16 34 35 36 37
|
evls1fvcl |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( O ` f ) ` A ) e. B ) |
39 |
|
simplr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> g e. ( Base ` P ) ) |
40 |
1 2 3 16 34 35 36 39
|
evls1fvcl |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( O ` g ) ` A ) e. B ) |
41 |
|
simpr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( f ( .r ` P ) g ) = ( M ` A ) ) |
42 |
41
|
fveq2d |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( O ` ( f ( .r ` P ) g ) ) = ( O ` ( M ` A ) ) ) |
43 |
42
|
fveq1d |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( O ` ( f ( .r ` P ) g ) ) ` A ) = ( ( O ` ( M ` A ) ) ` A ) ) |
44 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
45 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
46 |
1 3 2 17 16 44 45 34 35 37 39 36
|
evls1muld |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( O ` ( f ( .r ` P ) g ) ) ` A ) = ( ( ( O ` f ) ` A ) ( .r ` E ) ( ( O ` g ) ` A ) ) ) |
47 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
48 |
2 13 47
|
ig1pcl |
|- ( ( ( E |`s F ) e. DivRing /\ { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } e. ( LIdeal ` P ) ) -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
49 |
19 23 48
|
syl2anc |
|- ( ph -> ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
50 |
15 49
|
eqeltrd |
|- ( ph -> ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } ) |
51 |
|
fveq2 |
|- ( q = ( M ` A ) -> ( O ` q ) = ( O ` ( M ` A ) ) ) |
52 |
51
|
fveq1d |
|- ( q = ( M ` A ) -> ( ( O ` q ) ` A ) = ( ( O ` ( M ` A ) ) ` A ) ) |
53 |
52
|
eqeq1d |
|- ( q = ( M ` A ) -> ( ( ( O ` q ) ` A ) = ( 0g ` E ) <-> ( ( O ` ( M ` A ) ) ` A ) = ( 0g ` E ) ) ) |
54 |
53
|
elrab |
|- ( ( M ` A ) e. { q e. dom O | ( ( O ` q ) ` A ) = ( 0g ` E ) } <-> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = ( 0g ` E ) ) ) |
55 |
50 54
|
sylib |
|- ( ph -> ( ( M ` A ) e. dom O /\ ( ( O ` ( M ` A ) ) ` A ) = ( 0g ` E ) ) ) |
56 |
55
|
simprd |
|- ( ph -> ( ( O ` ( M ` A ) ) ` A ) = ( 0g ` E ) ) |
57 |
56
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( O ` ( M ` A ) ) ` A ) = ( 0g ` E ) ) |
58 |
43 46 57
|
3eqtr3d |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( ( O ` f ) ` A ) ( .r ` E ) ( ( O ` g ) ` A ) ) = ( 0g ` E ) ) |
59 |
3 45 10
|
domneq0 |
|- ( ( E e. Domn /\ ( ( O ` f ) ` A ) e. B /\ ( ( O ` g ) ` A ) e. B ) -> ( ( ( ( O ` f ) ` A ) ( .r ` E ) ( ( O ` g ) ` A ) ) = ( 0g ` E ) <-> ( ( ( O ` f ) ` A ) = ( 0g ` E ) \/ ( ( O ` g ) ` A ) = ( 0g ` E ) ) ) ) |
60 |
59
|
biimpa |
|- ( ( ( E e. Domn /\ ( ( O ` f ) ` A ) e. B /\ ( ( O ` g ) ` A ) e. B ) /\ ( ( ( O ` f ) ` A ) ( .r ` E ) ( ( O ` g ) ` A ) ) = ( 0g ` E ) ) -> ( ( ( O ` f ) ` A ) = ( 0g ` E ) \/ ( ( O ` g ) ` A ) = ( 0g ` E ) ) ) |
61 |
33 38 40 58 60
|
syl31anc |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( ( O ` f ) ` A ) = ( 0g ` E ) \/ ( ( O ` g ) ` A ) = ( 0g ` E ) ) ) |
62 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> E e. Field ) |
63 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> F e. ( SubDRing ` E ) ) |
64 |
36
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> A e. B ) |
65 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( M ` A ) =/= Z ) |
66 |
65
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> ( M ` A ) =/= Z ) |
67 |
37
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> f e. ( Base ` P ) ) |
68 |
|
simpllr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> g e. ( Base ` P ) ) |
69 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> ( f ( .r ` P ) g ) = ( M ` A ) ) |
70 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> ( ( O ` f ) ` A ) = ( 0g ` E ) ) |
71 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
72 |
4 5 71
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
73 |
|
fldidom |
|- ( ( E |`s F ) e. Field -> ( E |`s F ) e. IDomn ) |
74 |
72 73
|
syl |
|- ( ph -> ( E |`s F ) e. IDomn ) |
75 |
74
|
idomdomd |
|- ( ph -> ( E |`s F ) e. Domn ) |
76 |
2
|
ply1domn |
|- ( ( E |`s F ) e. Domn -> P e. Domn ) |
77 |
75 76
|
syl |
|- ( ph -> P e. Domn ) |
78 |
77
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> P e. Domn ) |
79 |
41 65
|
eqnetrd |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( f ( .r ` P ) g ) =/= Z ) |
80 |
16 44 8
|
domneq0 |
|- ( ( P e. Domn /\ f e. ( Base ` P ) /\ g e. ( Base ` P ) ) -> ( ( f ( .r ` P ) g ) = Z <-> ( f = Z \/ g = Z ) ) ) |
81 |
80
|
necon3abid |
|- ( ( P e. Domn /\ f e. ( Base ` P ) /\ g e. ( Base ` P ) ) -> ( ( f ( .r ` P ) g ) =/= Z <-> -. ( f = Z \/ g = Z ) ) ) |
82 |
81
|
biimpa |
|- ( ( ( P e. Domn /\ f e. ( Base ` P ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) =/= Z ) -> -. ( f = Z \/ g = Z ) ) |
83 |
78 37 39 79 82
|
syl31anc |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> -. ( f = Z \/ g = Z ) ) |
84 |
|
neanior |
|- ( ( f =/= Z /\ g =/= Z ) <-> -. ( f = Z \/ g = Z ) ) |
85 |
83 84
|
sylibr |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( f =/= Z /\ g =/= Z ) ) |
86 |
85
|
simpld |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> f =/= Z ) |
87 |
86
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> f =/= Z ) |
88 |
85
|
simprd |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> g =/= Z ) |
89 |
88
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> g =/= Z ) |
90 |
1 2 3 62 63 64 7 8 66 67 68 69 70 87 89
|
minplyirredlem |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` f ) ` A ) = ( 0g ` E ) ) -> g e. ( Unit ` P ) ) |
91 |
90
|
ex |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( ( O ` f ) ` A ) = ( 0g ` E ) -> g e. ( Unit ` P ) ) ) |
92 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> E e. Field ) |
93 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> F e. ( SubDRing ` E ) ) |
94 |
36
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> A e. B ) |
95 |
65
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( M ` A ) =/= Z ) |
96 |
|
simpllr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> g e. ( Base ` P ) ) |
97 |
37
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> f e. ( Base ` P ) ) |
98 |
72
|
fldcrngd |
|- ( ph -> ( E |`s F ) e. CRing ) |
99 |
2
|
ply1crng |
|- ( ( E |`s F ) e. CRing -> P e. CRing ) |
100 |
98 99
|
syl |
|- ( ph -> P e. CRing ) |
101 |
100
|
ad4antr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> P e. CRing ) |
102 |
16 44
|
crngcom |
|- ( ( P e. CRing /\ g e. ( Base ` P ) /\ f e. ( Base ` P ) ) -> ( g ( .r ` P ) f ) = ( f ( .r ` P ) g ) ) |
103 |
101 96 97 102
|
syl3anc |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( g ( .r ` P ) f ) = ( f ( .r ` P ) g ) ) |
104 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( f ( .r ` P ) g ) = ( M ` A ) ) |
105 |
103 104
|
eqtrd |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( g ( .r ` P ) f ) = ( M ` A ) ) |
106 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( ( O ` g ) ` A ) = ( 0g ` E ) ) |
107 |
88
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> g =/= Z ) |
108 |
86
|
adantr |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> f =/= Z ) |
109 |
1 2 3 92 93 94 7 8 95 96 97 105 106 107 108
|
minplyirredlem |
|- ( ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) /\ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> f e. ( Unit ` P ) ) |
110 |
109
|
ex |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( ( O ` g ) ` A ) = ( 0g ` E ) -> f e. ( Unit ` P ) ) ) |
111 |
91 110
|
orim12d |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( ( ( ( O ` f ) ` A ) = ( 0g ` E ) \/ ( ( O ` g ) ` A ) = ( 0g ` E ) ) -> ( g e. ( Unit ` P ) \/ f e. ( Unit ` P ) ) ) ) |
112 |
61 111
|
mpd |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( g e. ( Unit ` P ) \/ f e. ( Unit ` P ) ) ) |
113 |
112
|
orcomd |
|- ( ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) /\ ( f ( .r ` P ) g ) = ( M ` A ) ) -> ( f e. ( Unit ` P ) \/ g e. ( Unit ` P ) ) ) |
114 |
113
|
ex |
|- ( ( ( ph /\ f e. ( Base ` P ) ) /\ g e. ( Base ` P ) ) -> ( ( f ( .r ` P ) g ) = ( M ` A ) -> ( f e. ( Unit ` P ) \/ g e. ( Unit ` P ) ) ) ) |
115 |
114
|
anasss |
|- ( ( ph /\ ( f e. ( Base ` P ) /\ g e. ( Base ` P ) ) ) -> ( ( f ( .r ` P ) g ) = ( M ` A ) -> ( f e. ( Unit ` P ) \/ g e. ( Unit ` P ) ) ) ) |
116 |
115
|
ralrimivva |
|- ( ph -> A. f e. ( Base ` P ) A. g e. ( Base ` P ) ( ( f ( .r ` P ) g ) = ( M ` A ) -> ( f e. ( Unit ` P ) \/ g e. ( Unit ` P ) ) ) ) |
117 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
118 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
119 |
16 117 118 44
|
isirred2 |
|- ( ( M ` A ) e. ( Irred ` P ) <-> ( ( M ` A ) e. ( Base ` P ) /\ -. ( M ` A ) e. ( Unit ` P ) /\ A. f e. ( Base ` P ) A. g e. ( Base ` P ) ( ( f ( .r ` P ) g ) = ( M ` A ) -> ( f e. ( Unit ` P ) \/ g e. ( Unit ` P ) ) ) ) ) |
120 |
14 29 116 119
|
syl3anbrc |
|- ( ph -> ( M ` A ) e. ( Irred ` P ) ) |