Metamath Proof Explorer


Theorem evls1fvcl

Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1maprhm.q
|- O = ( R evalSub1 S )
evls1maprhm.p
|- P = ( Poly1 ` ( R |`s S ) )
evls1maprhm.b
|- B = ( Base ` R )
evls1maprhm.u
|- U = ( Base ` P )
evls1maprhm.r
|- ( ph -> R e. CRing )
evls1maprhm.s
|- ( ph -> S e. ( SubRing ` R ) )
evls1fvcl.1
|- ( ph -> Y e. B )
evls1fvcl.2
|- ( ph -> M e. U )
Assertion evls1fvcl
|- ( ph -> ( ( O ` M ) ` Y ) e. B )

Proof

Step Hyp Ref Expression
1 evls1maprhm.q
 |-  O = ( R evalSub1 S )
2 evls1maprhm.p
 |-  P = ( Poly1 ` ( R |`s S ) )
3 evls1maprhm.b
 |-  B = ( Base ` R )
4 evls1maprhm.u
 |-  U = ( Base ` P )
5 evls1maprhm.r
 |-  ( ph -> R e. CRing )
6 evls1maprhm.s
 |-  ( ph -> S e. ( SubRing ` R ) )
7 evls1fvcl.1
 |-  ( ph -> Y e. B )
8 evls1fvcl.2
 |-  ( ph -> M e. U )
9 eqid
 |-  ( R |`s S ) = ( R |`s S )
10 eqid
 |-  ( eval1 ` R ) = ( eval1 ` R )
11 1 3 2 9 4 10 5 6 ressply1evl
 |-  ( ph -> O = ( ( eval1 ` R ) |` U ) )
12 11 fveq1d
 |-  ( ph -> ( O ` M ) = ( ( ( eval1 ` R ) |` U ) ` M ) )
13 8 fvresd
 |-  ( ph -> ( ( ( eval1 ` R ) |` U ) ` M ) = ( ( eval1 ` R ) ` M ) )
14 12 13 eqtrd
 |-  ( ph -> ( O ` M ) = ( ( eval1 ` R ) ` M ) )
15 14 fveq1d
 |-  ( ph -> ( ( O ` M ) ` Y ) = ( ( ( eval1 ` R ) ` M ) ` Y ) )
16 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
17 eqid
 |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) )
18 eqid
 |-  ( ( Poly1 ` R ) |`s U ) = ( ( Poly1 ` R ) |`s U )
19 16 9 2 4 6 18 ressply1bas
 |-  ( ph -> U = ( Base ` ( ( Poly1 ` R ) |`s U ) ) )
20 18 17 ressbasss
 |-  ( Base ` ( ( Poly1 ` R ) |`s U ) ) C_ ( Base ` ( Poly1 ` R ) )
21 19 20 eqsstrdi
 |-  ( ph -> U C_ ( Base ` ( Poly1 ` R ) ) )
22 21 8 sseldd
 |-  ( ph -> M e. ( Base ` ( Poly1 ` R ) ) )
23 10 16 3 17 5 7 22 fveval1fvcl
 |-  ( ph -> ( ( ( eval1 ` R ) ` M ) ` Y ) e. B )
24 15 23 eqeltrd
 |-  ( ph -> ( ( O ` M ) ` Y ) e. B )