| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1maprhm.q |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
evls1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
evls1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evls1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 5 |
|
evls1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
evls1maprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
evls1fvcl.1 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
evls1fvcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 10 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
| 11 |
1 3 2 9 4 10 5 6
|
ressply1evl |
⊢ ( 𝜑 → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) ) |
| 13 |
8
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ) |
| 14 |
12 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 16 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 18 |
|
eqid |
⊢ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) = ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) |
| 19 |
16 9 2 4 6 18
|
ressply1bas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 20 |
18 17
|
ressbasss |
⊢ ( Base ‘ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 21 |
19 20
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 22 |
21 8
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 23 |
10 16 3 17 5 7 22
|
fveval1fvcl |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 24 |
15 23
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |