Metamath Proof Explorer


Theorem evls1fvcl

Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
evls1fvcl.1 ( 𝜑𝑌𝐵 )
evls1fvcl.2 ( 𝜑𝑀𝑈 )
Assertion evls1fvcl ( 𝜑 → ( ( 𝑂𝑀 ) ‘ 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
4 evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
5 evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
6 evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 evls1fvcl.1 ( 𝜑𝑌𝐵 )
8 evls1fvcl.2 ( 𝜑𝑀𝑈 )
9 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
10 eqid ( eval1𝑅 ) = ( eval1𝑅 )
11 1 3 2 9 4 10 5 6 ressply1evl ( 𝜑𝑂 = ( ( eval1𝑅 ) ↾ 𝑈 ) )
12 11 fveq1d ( 𝜑 → ( 𝑂𝑀 ) = ( ( ( eval1𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) )
13 8 fvresd ( 𝜑 → ( ( ( eval1𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) = ( ( eval1𝑅 ) ‘ 𝑀 ) )
14 12 13 eqtrd ( 𝜑 → ( 𝑂𝑀 ) = ( ( eval1𝑅 ) ‘ 𝑀 ) )
15 14 fveq1d ( 𝜑 → ( ( 𝑂𝑀 ) ‘ 𝑌 ) = ( ( ( eval1𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) )
16 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
17 eqid ( Base ‘ ( Poly1𝑅 ) ) = ( Base ‘ ( Poly1𝑅 ) )
18 eqid ( ( Poly1𝑅 ) ↾s 𝑈 ) = ( ( Poly1𝑅 ) ↾s 𝑈 )
19 16 9 2 4 6 18 ressply1bas ( 𝜑𝑈 = ( Base ‘ ( ( Poly1𝑅 ) ↾s 𝑈 ) ) )
20 18 17 ressbasss ( Base ‘ ( ( Poly1𝑅 ) ↾s 𝑈 ) ) ⊆ ( Base ‘ ( Poly1𝑅 ) )
21 19 20 eqsstrdi ( 𝜑𝑈 ⊆ ( Base ‘ ( Poly1𝑅 ) ) )
22 21 8 sseldd ( 𝜑𝑀 ∈ ( Base ‘ ( Poly1𝑅 ) ) )
23 10 16 3 17 5 7 22 fveval1fvcl ( 𝜑 → ( ( ( eval1𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 )
24 15 23 eqeltrd ( 𝜑 → ( ( 𝑂𝑀 ) ‘ 𝑌 ) ∈ 𝐵 )