| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pirred.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ig1pirred.g |
|- G = ( idlGen1p ` R ) |
| 3 |
|
ig1pirred.u |
|- U = ( Base ` P ) |
| 4 |
|
ig1pirred.r |
|- ( ph -> R e. DivRing ) |
| 5 |
|
ig1pirred.1 |
|- ( ph -> I e. ( LIdeal ` P ) ) |
| 6 |
|
ig1pirred.2 |
|- ( ph -> I =/= U ) |
| 7 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
| 8 |
|
simpr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> ( G ` I ) e. ( Unit ` P ) ) |
| 9 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
| 10 |
1 2 9
|
ig1pcl |
|- ( ( R e. DivRing /\ I e. ( LIdeal ` P ) ) -> ( G ` I ) e. I ) |
| 11 |
4 5 10
|
syl2anc |
|- ( ph -> ( G ` I ) e. I ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> ( G ` I ) e. I ) |
| 13 |
4
|
drngringd |
|- ( ph -> R e. Ring ) |
| 14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 15 |
13 14
|
syl |
|- ( ph -> P e. Ring ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> P e. Ring ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I e. ( LIdeal ` P ) ) |
| 18 |
3 7 8 12 16 17
|
lidlunitel |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I = U ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I =/= U ) |
| 20 |
19
|
neneqd |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> -. I = U ) |
| 21 |
18 20
|
pm2.65da |
|- ( ph -> -. ( G ` I ) e. ( Unit ` P ) ) |