Step |
Hyp |
Ref |
Expression |
1 |
|
ig1pirred.p |
|- P = ( Poly1 ` R ) |
2 |
|
ig1pirred.g |
|- G = ( idlGen1p ` R ) |
3 |
|
ig1pirred.u |
|- U = ( Base ` P ) |
4 |
|
ig1pirred.r |
|- ( ph -> R e. DivRing ) |
5 |
|
ig1pirred.1 |
|- ( ph -> I e. ( LIdeal ` P ) ) |
6 |
|
ig1pirred.2 |
|- ( ph -> I =/= U ) |
7 |
|
eqid |
|- ( Unit ` P ) = ( Unit ` P ) |
8 |
|
simpr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> ( G ` I ) e. ( Unit ` P ) ) |
9 |
|
eqid |
|- ( LIdeal ` P ) = ( LIdeal ` P ) |
10 |
1 2 9
|
ig1pcl |
|- ( ( R e. DivRing /\ I e. ( LIdeal ` P ) ) -> ( G ` I ) e. I ) |
11 |
4 5 10
|
syl2anc |
|- ( ph -> ( G ` I ) e. I ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> ( G ` I ) e. I ) |
13 |
4
|
drngringd |
|- ( ph -> R e. Ring ) |
14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
15 |
13 14
|
syl |
|- ( ph -> P e. Ring ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> P e. Ring ) |
17 |
5
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I e. ( LIdeal ` P ) ) |
18 |
3 7 8 12 16 17
|
lidlunitel |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I = U ) |
19 |
6
|
adantr |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> I =/= U ) |
20 |
19
|
neneqd |
|- ( ( ph /\ ( G ` I ) e. ( Unit ` P ) ) -> -. I = U ) |
21 |
18 20
|
pm2.65da |
|- ( ph -> -. ( G ` I ) e. ( Unit ` P ) ) |