| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pirred.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ig1pirred.g |
⊢ 𝐺 = ( idlGen1p ‘ 𝑅 ) |
| 3 |
|
ig1pirred.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 4 |
|
ig1pirred.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 5 |
|
ig1pirred.1 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 6 |
|
ig1pirred.2 |
⊢ ( 𝜑 → 𝐼 ≠ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) |
| 9 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 10 |
1 2 9
|
ig1pcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |
| 11 |
4 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐼 ) |
| 13 |
4
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → 𝑃 ∈ Ring ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → 𝐼 ∈ ( LIdeal ‘ 𝑃 ) ) |
| 18 |
3 7 8 12 16 17
|
lidlunitel |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → 𝐼 = 𝑈 ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → 𝐼 ≠ 𝑈 ) |
| 20 |
19
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) → ¬ 𝐼 = 𝑈 ) |
| 21 |
18 20
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝐺 ‘ 𝐼 ) ∈ ( Unit ‘ 𝑃 ) ) |