| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annig1p.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 2 |
|
ply1annig1p.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 3 |
|
ply1annig1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 4 |
|
ply1annig1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 5 |
|
ply1annig1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 6 |
|
ply1annig1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
minplyirred.1 |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 8 |
|
minplyirred.2 |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 9 |
|
minplyirred.3 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 11 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 12 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 14 |
1 2 3 4 5 6 10 11 12 13 7
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 15 |
1 2 3 4 5 6 10 11 12 13 7
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 17 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 18 |
17
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 20 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 21 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 22 |
5 21
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 23 |
1 2 3 20 22 6 10 11
|
ply1annidl |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ 𝑃 ) ) |
| 24 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 25 |
|
drngnzr |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ NzRing ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ NzRing ) |
| 27 |
1 2 3 20 22 6 10 11 16 26
|
ply1annnr |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ≠ ( Base ‘ 𝑃 ) ) |
| 28 |
2 13 16 19 23 27
|
ig1pnunit |
⊢ ( 𝜑 → ¬ ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ ( Unit ‘ 𝑃 ) ) |
| 29 |
15 28
|
eqneltrd |
⊢ ( 𝜑 → ¬ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ) |
| 30 |
|
fldidom |
⊢ ( 𝐸 ∈ Field → 𝐸 ∈ IDomn ) |
| 31 |
4 30
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ IDomn ) |
| 32 |
31
|
idomdomd |
⊢ ( 𝜑 → 𝐸 ∈ Domn ) |
| 33 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝐸 ∈ Domn ) |
| 34 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝐸 ∈ CRing ) |
| 35 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 36 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝐴 ∈ 𝐵 ) |
| 37 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝑓 ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
1 2 3 16 34 35 36 37
|
evls1fvcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ∈ 𝐵 ) |
| 39 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝑔 ∈ ( Base ‘ 𝑃 ) ) |
| 40 |
1 2 3 16 34 35 36 39
|
evls1fvcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ∈ 𝐵 ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑂 ‘ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ) = ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 43 |
42
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) |
| 44 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 45 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 46 |
1 3 2 17 16 44 45 34 35 37 39 36
|
evls1muld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ) ‘ 𝐴 ) = ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ) ) |
| 47 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 48 |
2 13 47
|
ig1pcl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ∈ ( LIdeal ‘ 𝑃 ) ) → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 49 |
19 23 48
|
syl2anc |
⊢ ( 𝜑 → ( ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 50 |
15 49
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 51 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( 𝑂 ‘ 𝑞 ) = ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 52 |
51
|
fveq1d |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) ) |
| 53 |
52
|
eqeq1d |
⊢ ( 𝑞 = ( 𝑀 ‘ 𝐴 ) → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ↔ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 54 |
53
|
elrab |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ↔ ( ( 𝑀 ‘ 𝐴 ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 55 |
50 54
|
sylib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 56 |
55
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 57 |
56
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑂 ‘ ( 𝑀 ‘ 𝐴 ) ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 58 |
43 46 57
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐸 ) ) |
| 59 |
3 45 10
|
domneq0 |
⊢ ( ( 𝐸 ∈ Domn ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ∈ 𝐵 ) → ( ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐸 ) ↔ ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ∨ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) ) |
| 60 |
59
|
biimpa |
⊢ ( ( ( 𝐸 ∈ Domn ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ∈ 𝐵 ) ∧ ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) ( .r ‘ 𝐸 ) ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) ) = ( 0g ‘ 𝐸 ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ∨ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 61 |
33 38 40 58 60
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ∨ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) ) |
| 62 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐸 ∈ Field ) |
| 63 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 64 |
36
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐴 ∈ 𝐵 ) |
| 65 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 67 |
37
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑓 ∈ ( Base ‘ 𝑃 ) ) |
| 68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑔 ∈ ( Base ‘ 𝑃 ) ) |
| 69 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 70 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 71 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 72 |
4 5 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 73 |
|
fldidom |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Field → ( 𝐸 ↾s 𝐹 ) ∈ IDomn ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ IDomn ) |
| 75 |
74
|
idomdomd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Domn ) |
| 76 |
2
|
ply1domn |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Domn → 𝑃 ∈ Domn ) |
| 77 |
75 76
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
| 78 |
77
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝑃 ∈ Domn ) |
| 79 |
41 65
|
eqnetrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ≠ 𝑍 ) |
| 80 |
16 44 8
|
domneq0 |
⊢ ( ( 𝑃 ∈ Domn ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = 𝑍 ↔ ( 𝑓 = 𝑍 ∨ 𝑔 = 𝑍 ) ) ) |
| 81 |
80
|
necon3abid |
⊢ ( ( 𝑃 ∈ Domn ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ≠ 𝑍 ↔ ¬ ( 𝑓 = 𝑍 ∨ 𝑔 = 𝑍 ) ) ) |
| 82 |
81
|
biimpa |
⊢ ( ( ( 𝑃 ∈ Domn ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ≠ 𝑍 ) → ¬ ( 𝑓 = 𝑍 ∨ 𝑔 = 𝑍 ) ) |
| 83 |
78 37 39 79 82
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ¬ ( 𝑓 = 𝑍 ∨ 𝑔 = 𝑍 ) ) |
| 84 |
|
neanior |
⊢ ( ( 𝑓 ≠ 𝑍 ∧ 𝑔 ≠ 𝑍 ) ↔ ¬ ( 𝑓 = 𝑍 ∨ 𝑔 = 𝑍 ) ) |
| 85 |
83 84
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑓 ≠ 𝑍 ∧ 𝑔 ≠ 𝑍 ) ) |
| 86 |
85
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝑓 ≠ 𝑍 ) |
| 87 |
86
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑓 ≠ 𝑍 ) |
| 88 |
85
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → 𝑔 ≠ 𝑍 ) |
| 89 |
88
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑔 ≠ 𝑍 ) |
| 90 |
1 2 3 62 63 64 7 8 66 67 68 69 70 87 89
|
minplyirredlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑔 ∈ ( Unit ‘ 𝑃 ) ) |
| 91 |
90
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) → 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) |
| 92 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐸 ∈ Field ) |
| 93 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 94 |
36
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝐴 ∈ 𝐵 ) |
| 95 |
65
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑀 ‘ 𝐴 ) ≠ 𝑍 ) |
| 96 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑔 ∈ ( Base ‘ 𝑃 ) ) |
| 97 |
37
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑓 ∈ ( Base ‘ 𝑃 ) ) |
| 98 |
72
|
fldcrngd |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ CRing ) |
| 99 |
2
|
ply1crng |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ CRing → 𝑃 ∈ CRing ) |
| 100 |
98 99
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 101 |
100
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑃 ∈ CRing ) |
| 102 |
16 44
|
crngcom |
⊢ ( ( 𝑃 ∈ CRing ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑔 ( .r ‘ 𝑃 ) 𝑓 ) = ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ) |
| 103 |
101 96 97 102
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑔 ( .r ‘ 𝑃 ) 𝑓 ) = ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) ) |
| 104 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 105 |
103 104
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑔 ( .r ‘ 𝑃 ) 𝑓 ) = ( 𝑀 ‘ 𝐴 ) ) |
| 106 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) |
| 107 |
88
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑔 ≠ 𝑍 ) |
| 108 |
86
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑓 ≠ 𝑍 ) |
| 109 |
1 2 3 92 93 94 7 8 95 96 97 105 106 107 108
|
minplyirredlem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) ∧ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → 𝑓 ∈ ( Unit ‘ 𝑃 ) ) |
| 110 |
109
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) → 𝑓 ∈ ( Unit ‘ 𝑃 ) ) ) |
| 111 |
91 110
|
orim12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( ( ( ( 𝑂 ‘ 𝑓 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ∨ ( ( 𝑂 ‘ 𝑔 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) ) → ( 𝑔 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑓 ∈ ( Unit ‘ 𝑃 ) ) ) ) |
| 112 |
61 111
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑔 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑓 ∈ ( Unit ‘ 𝑃 ) ) ) |
| 113 |
112
|
orcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) ) → ( 𝑓 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) |
| 114 |
113
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) → ( 𝑓 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) ) |
| 115 |
114
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( Base ‘ 𝑃 ) ∧ 𝑔 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) → ( 𝑓 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) ) |
| 116 |
115
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Base ‘ 𝑃 ) ∀ 𝑔 ∈ ( Base ‘ 𝑃 ) ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) → ( 𝑓 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) ) |
| 117 |
|
eqid |
⊢ ( Unit ‘ 𝑃 ) = ( Unit ‘ 𝑃 ) |
| 118 |
|
eqid |
⊢ ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 ) |
| 119 |
16 117 118 44
|
isirred2 |
⊢ ( ( 𝑀 ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) ↔ ( ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ∧ ¬ ( 𝑀 ‘ 𝐴 ) ∈ ( Unit ‘ 𝑃 ) ∧ ∀ 𝑓 ∈ ( Base ‘ 𝑃 ) ∀ 𝑔 ∈ ( Base ‘ 𝑃 ) ( ( 𝑓 ( .r ‘ 𝑃 ) 𝑔 ) = ( 𝑀 ‘ 𝐴 ) → ( 𝑓 ∈ ( Unit ‘ 𝑃 ) ∨ 𝑔 ∈ ( Unit ‘ 𝑃 ) ) ) ) ) |
| 120 |
14 29 116 119
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) ) |